DOI QR코드

DOI QR Code

Analysis of Structure and Physical and Chemical Properties of the Carbonized Pine Wood (Pinus densiflora Sieb. et Zucc.) Materials - Pyrolytic Behavior of Pine Wood Dust -

가열처리 및 탄화처리 소나무재(Pinus densiflora Sieb. et Zucc.)의 구조 및 물리·화학적 특성(III) - 소나무재 톱밥의 열분해 반응 -

  • Lee, In-Ja (Department of Advanced Materials Chemistry, Dongguk University-Gyeongju) ;
  • Lee, Won-Hee (Dept. of Wood Sci. &Tech., College of Agriculture & Life Sciences, Kyungpook National University)
  • 이인자 (동국대학교 경주캠퍼스 신소재화학과) ;
  • 이원희 (경북대학교 농업생명과학대학 임산공학과)
  • Received : 2013.07.25
  • Accepted : 2014.02.24
  • Published : 2014.05.25

Abstract

To extend the understanding of the pyrolysis mechanism of wood, we have investigated wood dust charcoal and condensate of volatile organic compounds (VOC) obtained during the pyrolysis of red pine (Pinus densiflora Sieb. et Zucc.) at $180{\sim}450^{\circ}C$ using elemental analysis, IR and GC/Mass. The effect of activation process on the charcoal structure also has been studied by comparing elemental analysis and IR data of charcoal carbonated at $600^{\circ}C$ and charcoals activated at $750^{\circ}C$. The results show that pyrolysis of wood has mainly started near at $240^{\circ}C$ and its chemical components did not changed much up to $270^{\circ}C$. However, the element contents and IR spectra drastically changed at $300^{\circ}C$. The fact that IR peaks related to the aromatic ring of lignin are observed in the charcoal pyrolized at $450^{\circ}C$ indicates that a small part of lignin still remains at this temperature. The chemical structure of the activated charcoal seems almost unaffected by the activation time.

목재의 열분해 메카니즘을 심층적으로 이해하기 위하여 소나무재(Pinus densiflora Sieb. et Zucc.) 톱밥을 $180{\sim}450^{\circ}C$에서 열분해시켜 얻은 목탄과 휘발성 물질을 원소분석, IR과 GC/Mass로 분석하였으며, 활성화 과정이 목탄의 구조에 미치는 영향을 알아보기 위하여 $600^{\circ}C$에서 탄화시킨 것과 $750^{\circ}C$에서 활성화시킨 목탄을 원소분석 및 IR로 분석하였다. 그 결과, 목분의 열분해는 $240^{\circ}C$ 부근에서 본격적으로 일어나기 시작하며, $270^{\circ}C$까지는 화학적 구조가 크게 변하지 않았지만, $300^{\circ}C$에서 원소의 성분비와 IR 스펙트럼이 급격하게 변하는 것이 관찰되었다. 또 리그닌의 방향족 고리가 $450^{\circ}C$에서도 여전히 관찰되고 있는 것으로 보아 이 온도에서 분해되지 않은 리그닌이 일부 남아있음을 알 수 있다. 활성화 시간은 활성탄의 화학구조에 영향을 미치지 않았다.

Keywords

References

  1. Alen, R., Kuoppala, E., Oesch, P. 1996. "Formation of the main degradation compound groups from wood and its components during pyrolysis", Journal of Analytical and Applied Pyrolysis, 36, 137-148. https://doi.org/10.1016/0165-2370(96)00932-1
  2. Antal, M.J., Varhegyi, G. 1995. Cellulose pyrolysis kinetics: the current state of knowledge Industrial & Engineering Chemistry Research 34, 703. https://doi.org/10.1021/ie00042a001
  3. Avni, E., Davoudzeadeh, F., Coughlin, R.W. 1985. Flash pyrolysis of lignin. In Fundamentals of Thermochemical Biomass Conversion; Overend P. P., Milne T. A., Mudge L. K. (Eds.), Elsevier, New York, pp. 329-343.
  4. Bacon, R., Tang, M. 1964. Carbonization of cellulose fibers-II. Physical property study. Carbon. 2, 221-222. https://doi.org/10.1016/0008-6223(64)90036-3
  5. Branca, C., Giudicianni, P., Colomba Di, B. 2003. Industrial & Engineering Chemistry Research, 42, 3190. https://doi.org/10.1021/ie030066d
  6. Capallero, J., Font, A.R., Marcilla, A.A., Garcia, N. 1993. Journal of Analytical and Applied Pyrolysis, 27, 221-244. https://doi.org/10.1016/0165-2370(93)80011-N
  7. Christner, L.G., Walker, Jr. P.L. 1993. Carbon, 31, 1149. https://doi.org/10.1016/0008-6223(93)90068-L
  8. Del Rio, J.C., Gutierrez, A., Romero, J., Martinez, M.J., Martinez, A.T. 2001. Identification of residual lignin markers in eucalypt kraft pulps by Py-GC/MS. Journal of Analytical and Applied Pyrolysis, 58-59, 425. https://doi.org/10.1016/S0165-2370(00)00126-1
  9. Egsgaard, H., Larsen, E. 2001. Thermal transformation of light tar: Specific routes to aromatic aldehydes and PAH. In Biomass Helm, P., Grassi, A., Chiaramonti, D., Eds.; James & James Science Publishers: London, pp 1468-1471.
  10. Ercin, D., Yuda, Y. 2003. Carbonisation of Fir (Abies bornmulleriana) wood in an open pyrolysis system at 50-300 ${^{\circ}C}$. Journal of Analytical and Applied Pyrolysis, 67(1): 11-12. https://doi.org/10.1016/S0165-2370(02)00011-6
  11. Fengel, D., Wegener, G. 1989. Wood: Chemistry, ultrastructure, reactions, pp.26-226. Berline, Germany, Walter de Gruyter.
  12. Friedel, R.A., Queiser, J.A. 1956. Analytical Chemistry, 28, 22. https://doi.org/10.1021/ac60109a009
  13. Gronli, M.G., Varhegyi, G., Di Blasi, C. 2002. Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research 41, 4201. https://doi.org/10.1021/ie0201157
  14. Lee, I.-J., Lee, W.-H. 2008a. Analysis of structure and physical and chemical properties of the carbonized Pine wood (Pinus densiflora Sieb. et Zucc.) materials(1) -Elemental analysis, SEM, N2 Adsorption-desorption-. Journal of Korean Wood Science and Technology. 36(4):44-51. https://doi.org/10.5658/WOOD.2008.36.4.044
  15. Lee, I.-J., Lee, W.-H. 2008b. Analysis of structure and physical and chemical properties of the carbonized Pine wood (Pinus densiflora Sieb. et Zucc.) materials(2) -FT-IR, Raman-. Journal of Korean Wood Science and Technology. 36(4):52-57. https://doi.org/10.5658/WOOD.2008.36.4.052
  16. Murwanashyaka, J.M., Pakdel, H., Roy, C. 2001. Step-wise and one-step vacuum pyrolysis of birch derived biomass to monitor the evolution of phenojls. Journal of Analytical and Applied Pyrolysis, 60, 219. https://doi.org/10.1016/S0165-2370(00)00206-0
  17. Pandey, K.K., Pitman, A.J. 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration & Biodegradation. 52(3): 151-160. https://doi.org/10.1016/S0964-8305(03)00052-0
  18. Pastor-Villegas, J., Duran-Valle, C.J., Valenzuela-alahorro, C., Gomez-Serrano, V. 1998. "Organic chemical structure and structral shrinkage of chars prepared from rockrose", Carbon, 36(9), 1251-1256. https://doi.org/10.1016/S0008-6223(97)00200-5
  19. Piskorz, J., Majerski, P., Randlein, D., Scott, D.S., Bridgwater, A.V. 1998. Fast pyrolysis of sweet sorghum and sweet sorghum bagasse. Journal of Analytical and Applied Pyrolysis, 46, 15. https://doi.org/10.1016/S0165-2370(98)00067-9
  20. Shafizadeh, F. 1985. Pyrolytic reactions and products of biomass, in Fundamentals of thermochemical biomass conversion; P. P. Overend, T. A. Milne, L. K. Mudge (Eds.), Elsevier, New York, pp. 183-217.
  21. Shafizadeh, F. 1975. Industrial pyrolysis of cellulosic materials. In Applied Polymer Symposia; Wiley: New York, Vol. 28, pp 153-174.
  22. Shafizadeh, F., Chin, P.P.S. 1977. Thermal deterioration of wood. ACS Symposium Series. 43, 57-81
  23. Sjostrom, F. 1993. Wood Chemistry. Fundamentals and Applications 2., Ed., Academic Press, San Diego USA. pp. 51-108.
  24. Van der Hage, E.R.E., Mulder, M.M., Boon, J.J. 1993. Structural characterization of lignin polymers by temperature-resolved in-source pyrolysis-mass spectroscopy and Curie-point pyrolysis-gas chromatography/ mass spectrometry Journal of Analytical and Applied Pyrolysis, 25, 149-183. https://doi.org/10.1016/0165-2370(93)80038-2

Cited by

  1. Interfacial and Mechanical properties of Different Heat Treated Wood and Evaluation of Bonding Property between Stone and Wood for Rock Bed vol.16, pp.2, 2015, https://doi.org/10.17702/jai.2015.16.2.69
  2. Upgrading of the Hydrophobicity of Larix kaempferi and Liriodendron tulipifera via Torrefaction vol.12, pp.4, 2016, https://doi.org/10.7849/ksnre.2016.12.12.4.070