DOI QR코드

DOI QR Code

Optimization of Fermentation Conditions for the Production of Citric Acid by Aspergillus niger NRRL 567 Grown on Agricultural by Products

목질계 농부산물을 이용한 고체발효에서 발효조건 최적화를 통한 구연산 생산 증대

  • Kim, Jin-Woo (Department of Biosystems Engineering, McGill University)
  • 김진우 (맥길대학교 바이오시스템공학과)
  • Received : 2014.01.23
  • Accepted : 2014.02.27
  • Published : 2014.06.01

Abstract

The present study was carried out to evaluate the potential of lignocellulosic byproducts for the production of citric acid through solid-state fermentation by Aspergillus niger NRRL 567. A sequential optimization based on one-factor-at-a-time method was applied to optimize fermentation conditions and media constituents. The results obtained from the optimization indicated that $30^{\circ}C$, 70% moisture content, 0.5~1.0 mm particle size, pH 5.5 and 4% methanol were found to be the optimum condition at 72 hr fermentation. The application the optimization resulted in an improvement of maximum citric acid production from 74.5 to 206.0 g/kg dry material (DM) from wheat straw. The optimal condition was used to produce citric acid from A. niger grown on different lignocellulosic byproducts, including wheat straw, corn stover and peat moss. A. niger produced the highest citric acid levels of 231.8, 213.8 and 240.2 g/kg DM at 120 hr fermentation, respectively.

본 실험에서는 농부산물인 밀짚을 고체배지로 사용하여 Aspergillus niger NRRL 567에서 구연산 생산 시, 발효조건과 첨가제가 구연산 생산에 미치는 영향을 단일변수(one-factor-at-a-time) 최적화를 이용하여 주요 인자의 순차적 최적화를 수행하였다. 발효 72시간에서 온도, 수분함량, 입자크기, pH와 첨가제 농도를 최적화했을 때, 각각 $30^{\circ}C$, 70%, 0.5~1.0 mm, pH 5.5와 4% 메탄올 첨가조건에서 최대 구연산 생산인 206.0 g/kg 건조중량 (DM)을 확인할 수 있었다. 이는 최적화 이전 구연산 최고 생산인 74.5 g/kg DM 대비 177% 증가한 결과이다. 최적화 실험에서 도출된 조건을 밀짚, 옥수수대와 피트모스(peat moss)에 적용하여 고체발효를 수행하였을 때, 발효 120시간에서 각각 231.8, 213.8, 240.2 g/kg DM 구연산 생산을 확보하였다. 본 실험 결과는 밀짚과 옥수수대 등의 목질계 농부산물을 이용한 구연산 생산 시, 고체발효법이 기존의 액체발효법의 대체가 가능함을 시사하였다.

Keywords

References

  1. Haq, I., Khurshid, S., Ali, K., Ashraf, H., Qadeer, A. and Rajoka, I., "Mutation of Aspergillus niger for Hyper Production of Citric Acid from Black Molasses," W. J. Microbiol. Biotechnol., 17(1), 35-37(2001). https://doi.org/10.1023/A:1016625130070
  2. Betiku, E. and Adesina, O. A., "Statistical Approach to the Optimization of Citric Acid Production Using Filamentous Fungus Aspergillus niger Grown on Sweet Potato Starch Hydrolyzate," Biomass Bioenerg., 55, 350-354(2013). https://doi.org/10.1016/j.biombioe.2013.02.034
  3. Vandenberghe, L. P. S., Soccol, C. R., Pandey, A. and Lebeault, J. M, "Solid State Fermentation for the Synthesis of Citric Acid by Aspergillus niger," Bioresource Technol., 74(2), 175-178(2000). https://doi.org/10.1016/S0960-8524(99)00107-8
  4. Dhillon, G. S., Brar, S. K., Kaur, S., Verma, M., "Bioproduction and Extraction Optimization of Citric Acid from Aspergillus niger by Rotating Drum Type Solid-state Bioreactor," Ind. Crop. Prod., 41, 78-84(2013). https://doi.org/10.1016/j.indcrop.2012.04.001
  5. Honda, Y., Hattori, T., Kirimura, K., Alvarez, V. F., Gonzalez, A. C. and Torres, N. V., "Visual Expression Analysis of the Responses of the Alternative Oxidase Gene (aox1) to Heat Shock, Oxidative, and Osmotic Stresses in Conidia of Citric Acid-producing Aspergillus niger," J. Biosci. Bioeng., 113(3), 338-342(2012). https://doi.org/10.1016/j.jbiosc.2011.10.026
  6. Kim, J. W., Barrington, S., Sheppard, J. and Lee, B., "Nutrient Optimization for the Production of Citric Acid by Aspergillus niger NRRL 567 Grown on Peat Moss Enriched with Glucose," Process Biochem., 41(6), 1253-1260(2006). https://doi.org/10.1016/j.procbio.2005.12.021
  7. Angumeenal, A. R. and Venkappayya, D., "An Overview of Citric Acid Production," LWT-Food Sci. Technol., 50(2), 367-370(2013).
  8. Barrington, S., Kim, J. S., Wang, L. and Kim, J. W., "Response Surface Optimization of Fermentation Parameters for Citric Acid Production in Solid Substrate Fermentation," Korean Chem. Eng. Res., 50(5), 879-884(2012). https://doi.org/10.9713/kcer.2012.50.5.879
  9. Kim, J. W. and Barrington, S., "Response Surface Optimization of Medium Components for Citric Acid Production by Aspergillus niger NRRL 567 Grown in Peat Moss," Bioresour. Technol., 99(2), 368-377(2008). https://doi.org/10.1016/j.biortech.2006.12.007
  10. Wen, Z. Y. and Chen, F., "Application of Statistically-based Experimental Designs for the Optimization of Eicosapentaenoic Acid Production by the Diatom Nitzschia Laevis," Biotechnol. Bioeng., 75(2), 159-169(2001). https://doi.org/10.1002/bit.1175
  11. Kim, J. W., "Effect of Buffers on Citric Acid Production by Aspergillus niger NRRL 567 in Solid Substrate Fermentation," Korean Chem. Eng. Res., 50(5), 874-878(2012). https://doi.org/10.9713/kcer.2012.50.5.874
  12. Ellaiah, P., Srinivasulu, B. and Adinarayana, K., "Optimization Studies on Neomycin Production by a Mutant Strain of Streptomyces marinensis in Solid State Fermentation," Process Biochem., 39(5), 529-534(2004). https://doi.org/10.1016/S0032-9592(02)00059-6
  13. Barrington, S., Kim, J. S., Wang, L. and Kim, J. W., "Optimization of Citric Acid Production by Aspergillus niger NRRL 567 Grown in a Column Bioreactor," Korean J. Chem. Eng., 26(2), 422-427(2009). https://doi.org/10.1007/s11814-009-0071-4
  14. Mahadik, N. D., Puntambekar, U. S., Bastawde, K. B., Khire, J. M. and Gokhale, D. V., "Production of Acidic Lipase by Aspergillus niger in Solid State Fermentation," Process Biochem., 38(5), 715-721(2002). https://doi.org/10.1016/S0032-9592(02)00194-2
  15. Kumar, D., Verma, R. and Bhalla, T. C., "Citric Acid Production by Aspergillus niger van. Tieghem MTCC 281 Using Waste Apple Pomace as a Substrate," J. Food Sci. Technol., 47(4), 458-460(2010). https://doi.org/10.1007/s13197-010-0077-2
  16. Rezaei, P., Darzi, G. and Shafaghat, H., "Optimization of the Fermentation Conditions and Partial Characterization for Acidothermo Philic ${\alpha}$-amylase from Aspergillus niger NCIM 548," Korean J. Chem. Eng., 27(3), 919-924(2010). https://doi.org/10.1007/s11814-010-0138-2
  17. Kim, J. W., "Response Surface Optimization of Fermentation Parameters for Citric Acid Production in Solid Substrate Fermentation," Korean Chem. Eng. Res., 50(5), 879-884(2012). https://doi.org/10.9713/kcer.2012.50.5.879
  18. Roukas, T., "Citric Acid Production from Carob Pod by Solidstate Fermentation," Enz. Microb. Tech., 24(1), 54-59(1999). https://doi.org/10.1016/S0141-0229(98)00092-1
  19. Nampoothiri, M. K., Baiju, T. V., Sandhya, C., Sabu, A., Szakacs, G. and Pandey, A., "Process Optimization for Antifungal Chitinase Production by Trichoderma harzianum," Process Biochem., 39(11), 1583-1590(2004). https://doi.org/10.1016/S0032-9592(03)00282-6
  20. Betiku, E. and Adesina, O. A., "Statistical Approach to the Optimization of Citric Acid Production Using Filamentous Fungus Aspergillus niger Grown on Sweet Potato Starch Hydrolyzate," Biomass Bioenerg., 55, 350-354(2013). https://doi.org/10.1016/j.biombioe.2013.02.034
  21. Jianlong, W. and Ping, L., "Phytate as a Stimulator of Citric Acid Production by Aspergillus niger," Process Biochem., 33(3), 313-316(1998). https://doi.org/10.1016/S0032-9592(97)87513-9
  22. Lotfy, W. A., Ghanem, K. M. and El-Helow, E. R., "Citric Acid Production by a Novel Aspergillus niger isolate: I. Mutagenesis and Cost Reduction Studies," Bioresour. Technol., 98(18), 3464-3469(2007). https://doi.org/10.1016/j.biortech.2006.11.007
  23. Dhillon, G. S., Brar, S. K., Verma, M. and Tyagi, R. D., "Utilization of Different Agro-industrial Wastes for Sustainable Bioproduction of Citric Acid by Aspergillus niger," Biochem. Eng. J., 54(2), 83-92(2011). https://doi.org/10.1016/j.bej.2011.02.002

Cited by

  1. Pomegranate peel waste: a new substrate for citric acid production by Aspergillus niger in solid-state fermentation under non-aseptic conditions vol.27, pp.12, 2014, https://doi.org/10.1007/s11356-020-07928-9