DOI QR코드

DOI QR Code

Economic Design of Activated Sludge System at the Optimum Sludge Concentration

슬러지 농도 최적화에 따른 합리적인 활성슬러지공정 설계방안 연구

  • Lee, Byung Joon (School of Construction and Environmental Engineering, Kyungpook National University) ;
  • Choi, Yun Young (School of Construction and Environmental Engineering, Kyungpook National University)
  • 이병준 (경북대학교 과학기술대학 건설방재공학부) ;
  • 최윤영 (경북대학교 과학기술대학 건설방재공학부)
  • Received : 2014.01.06
  • Accepted : 2014.04.24
  • Published : 2014.05.31

Abstract

The design procedures for a biological reactor and a secondary settling tank (SST) of an activated sludge system are based on the steady state design method (Ekama et al., 1986; WRC, 1984) and the 1-D flux theory design method (Ekama et al., 1997), respectively. This study combined both of the design procedures, to determine the optimum sludge concentration in the reactor and the best design with the lowest cost. The best design of the reactor volume and the SST diameter at the optimum sludge concentration were specified with varying wastewater and sludge characteristics, temperature, sludge retention time (SRT) and peak flow rate. The effects of the influent wastewater characteristics, such as substrate concentration and unbiodegradable particulate fraction, were found to be considerable, but the effect of unbiodegradable soluble fraction was to be negligible. The effects of sludge settling characteristics, were also significant. SRT, as an operating parameter, was found to be an important factor for determining the optimum sludge concentration. However, the effect of temperature was found to be small. Furthermore, for designing a large scale wastewater treatment plant, the number of reactors or SSTs could be estimated, by dividing the total reactor volume or SST area. The new combined design procedure, proposed in this research, will be able to allow engineers to provide the best design of an activated sludge system with the lowest cost.

활성슬러지 공정의 생물학적 반응조 및 2차 침전지 설계와 관련해서 정상상태 설계식(Ekama et al., 1986; WRC, 1984) 및 1-D flux theory 설계식(Ekama et al., 1997)을 사용하여 슬러지 농도에 따라 두 가지 공정을 일괄적으로 설계하였다. 또한, 슬러지 농도에 따른 생물학적 반응조 및 2차 침전지 크기 변화를 도식화하고, 유입수 성상이나 슬러지 침강성, 환경 및 운전조건 그리고 첨두유량이 각 공정의 크기결정에 미치는 영향을 평가하였다. 먼저유입수의 특성과 관련하여 난분해성 용해성 물질(fs,us)은 반응조 크기 결정에 큰 영향이 없었지만, 난분해성 입자성 물질(fs,up), 무기고형물(fi) 및 유기물 강도(Sti)의 영향은 크게 나타났다. 운전인자인 Sludge Retention Time (SRT)의 경우, 슬러지 생산량과 관련되므로 반응조 크기결정에 역시 큰 영향을 미쳤다. 2차 침전지의 설계요소인 Sludge Volume Index (SVI) 및 첨두유량이 커질수록 2차 침전지에 수리학적 부하가 커지게 되어, 2차 침전지가 크게 설계되어야 했다. 본 설계과정에서는, 온도 변화가 미치는 영향은 작게 나타났다. 대규모 처리장의 경우 반응조 및 2차 침전지 전체 크기 결정과 함께 1개조 크기의 상한선을 설정하여 개수를 산정하였다. 최종적으로 엔지니어는 여러 가지 슬러지 농도에 대하여 반응조 및 2차 침전조의 크기, 개수 및 현장조건을 고려한 건설비용을 반복적으로 계산하게 되면, 최소비용 설계와 함께 최적의 슬러지 농도를 결정하게 된다.

Keywords

References

  1. Choi, E.S. (2001).Water and wastewater treatment engineering. CheongMoon-Gak, Korea.
  2. Daewoo. (1998). Biological Nitrogen and Phosphate Removal Process: DNR Process Design Manual. Daewoo Institute of Construction Technology, Korea.
  3. Dold, P.L., Ekama, G.A., and Marais, GvR. (1980). "A general model for the activated sludge process." Prog. Water Technol., Vol. 12, No. 6, pp. 47-77
  4. Ekama, G.A., Dold, P.L., and Marais, GvR. (1986). "Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems."Wat. Sci. Tech., Vol. 18, pp. 91-114
  5. Ekama, G.A., Barnard, J.L., Ghnthert, F.W., Krebs, P., McCorquodale, J.A., Parker, D.S., and Wahlberg, E.J. (1997). Secondary settling tanks: Theory, design, modelling and operation. IAWQ STR No 6, International Association on Water Quality, London, UK.
  6. Ha, J.S. (2002). Performance evaluation of a BNR process with seasonal variation. PhD Dissertation, Korea University, Seoul, Korea.
  7. Henze, M., van Loosdrecht, M., Ekama, G.A., and Brdjanovic, D. (2008). Biological Wastewater Treatment: Principles, Modelling and Design. IWA Publishing, London, UK.
  8. Jenkins, D., Richard, M.G., and Daigger, G.T. (1984). Manual on the causes and control of activated sludge bulking and foaming. Water Research Commission, PO Box 824 Pretoria 0001, South Africa.
  9. KWWA (1998). Guidelines of sewage design. Ministry of Environment, Korea.
  10. Metcalf and Eddy. (1991). Wastewater Engineering: Treatment and Reuse. Mcgraw Hill, NY, USA.
  11. Park, J.B. (2002). The effects of DPAO and microbial community in the step feed 5-stage BNR process. PhD Dissertation, Korea University, Seoul, Korea.
  12. Randall, C.W., Barnard, J.L., and Stensel, H.D. (1992). Design and Retrofit ofWastewater Treatment Plants for Biological Nutrient Removal. Technomic Publishing Company, Lancaster, PA, USA
  13. Wentzel, M.C., Ekama, G.A., and Marais, GvR. (1992). "Processes and modelling of nitrification denitrification biological excess phosphorus removal systems." Wat. Sci. Tech., Vol. 25, No. 6, pp. 59-82.
  14. Wentzel, M.C., Mbewe, A., and Ekama, G.A. (1995). "Batch test for measurement of readily biodegradable COD and active organism concentrations in municipal wastewaters." Wat. SA., Vol. 21, No. 2, pp. 117-124
  15. Wilson, T.E. (1996). "A new approach to interpreting settling data." Procs. 69the Annual WEF Conference and Exposition, Dallas, Vol. 1, pp. 491-497
  16. WRC. (1984). Theory, design and operation of nutrient removal activated sludge processes. Water Research Commission, PO Box 824, Pretoria 0001, South Africa.