DOI QR코드

DOI QR Code

A Study on the Changes of Return Period Considering Nonstationarity of Rainfall Data

강우자료의 비정상성을 고려한 재현기간 변화에 관한 연구

  • Shin, Hongjoon (School of Civil and Environmental Engineering, Yonsei Univ.) ;
  • Ahn, Hyunjun (School of Civil and Environmental Engineering, Yonsei Univ.) ;
  • Heo, Jun-Haeng (School of Civil and Environmental Engineering, Yonsei Univ.)
  • 신홍준 (연세대학교 대학원 토목환경공학과) ;
  • 안현준 (연세대학교 대학원 토목환경공학과 통합과정) ;
  • 허준행 (연세대학교 사회환경공학부 토목환경공학과)
  • Received : 2014.03.11
  • Accepted : 2014.04.10
  • Published : 2014.05.31

Abstract

This research focuses on the changes of return period for nonstationary rainfall data in which exceedance or nonexceedance probability varies depending on time. We examined two definitions of return period under nonstationarity and also performed nonstationary frequency analysis using the nonstationary Gumbel model to investigate variations of return period in Korea. Seogwipo, Inje, Jecheon, Gumi, Mungyeong, and Geochang were selected as subject sites of application. These sites have a trend in rainfall data as well as having more than 30 years data. As the results of application, the return periods considering nonstationarity are different with those considering stationarity. The differences of return periods between nonstationarity and stationarity increase as growing return period increases. In addition, the return period using the expected waiting time method shows lower value than that using the expected number of event method.

본 연구에서는 초과확률 또는 비초과확률이 시간에 따라 변화한다는 비정상성을 가정하여 재현기간 산정에 대한 연구를 수행하였다. 비정상성을 고려한 2가지 재현기간 산정 방법에 대해 검토하고 비정상성 Gumbel 모형을 이용한 빈도해석을 수행하여 초과확률및 비초과확률을 구한 뒤비정상성을 고려한 재현기간 정의에따른 우리나라 재현기간의 변화에 대해서 살펴보았다. 적용 대상으로는 자료기간 30년 이상을 보유하면서 일 강우 자료의 경향성이 나타나는 서귀포, 인제, 제천, 구미, 문경, 거창 등 6개 지점을 선정하였다. 적용결과 비정상성을 고려한 재현기간 산정 시 기존의 재현기간 산정방법과는 재현기간이 다르게 산정됨을 알 수 있었고, 재현기간이 커질수록 정상성 가정하의 재현기간과 비정상성 가정하의 재현기간 값의 차이가 더 커지는 것으로 나타났다. 또한 비정상성을 고려한 재현기간의 2가지 정의 중 기대 대기시간(expected waiting time) 정의에 의한 방법이 기대 초과사상 수(expected number of exceedance event) 정의에 의한 방법보다 작은 재현기간이 산정 되었다.

Keywords

References

  1. Coles S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag, London.
  2. Cooley, D. (2013). "Return Periods and Return Levels Under Climate Change." Extremes in a Changing Climate, Edited by AghaKouchak et al., Springer, Netherlands, pp. 97-114.
  3. Cunderlik, J.M., and Burn, D.H. (2003). "Non-stationary pooled flood frequency analysis." Journal ofHydrology, Vol. 276, No. 1-4, pp. 210-223. https://doi.org/10.1016/S0022-1694(03)00062-3
  4. El Adlouni, S., Ouarda, T.B.M.J., Zhang, X., Roy, R., and Bobee, B. (2007). "Generalized maximum likelihood estimators for the nonstationary generalized extreme value model."Water Resources Research, Vol. 43, No. 3, W03410.
  5. Gumbel, E.J. (1958). Statistics of Extremes. Columbia University Press, New York.
  6. He, Y., Bardossy, A., and Brommundt, J. (2006). "Nonstationary flood frequency analysis in southern Germany." Proceedings of the 7th International Conference on HydroScience and Engineering, Philadelphia, USA.
  7. Jang, S.W., Seo, L., Kim, T.W., and Ahn, J.H. (2011). "Non-stationary Rainfall Frequency Analysis Based on Residual Analysis." Journal of the Korean Society of Civil Engineers, Vol. 31, No. 5B, pp. 449- 457.
  8. Katz, R.W., Parlange, M.B., and Naveau, P. (2002). "Statistics of extremes in hydrology." Advances in Water Resources, Vol. 25, No. 8-12, pp.1287-1304. https://doi.org/10.1016/S0309-1708(02)00056-8
  9. Kim, B.K., Kim, B.S., and Kim, H.S. (2008). "On the Change of Extreme Weather Event using Extreme Indices." Journal of the Korean Society of Civil Engineers, Vol. 28, No. 1B, pp. 41-53.
  10. Kim, B.S., Lee, J.K., Kim, H.S., and Lee, J.W. (2011). "Non-stationary Frequency Analysis with Climate Variability using Conditional Generalized Extreme Value Distribution." Journal of Korean Wetlands Society, Korean Wetlands Society, Vol 13, No. 3, pp. 499-514.
  11. Kwon, W.T. (2005). "Current Status and Perspectives of Climate Change Sciences." Asia-Pacific Journal of Atmospheric Sciences, Korea Meteorological Society, Vol. 41, No. 2-1, pp. 325-336.
  12. Kwon, W.T., Boo, K.O., and Heo, I.H. (2007). "Climate Change during the recent 10 years in Korea." 2007 Korea Water Resource Society Annual Conference, KWRA, pp. 278-280.
  13. Kwon, Y.M., Park, J.W., and Kim, T.W. (2009). "Estimation of Design Rainfalls Considering an Increasing Trend in Rainfall Data." Journal of the Korean Society of Civil Engineers, Vol. 29, No. 2B, pp. 131-139.
  14. Kwon, H.H., and Lee, J.J. (2011). "Seasonal Rainfall Outlook of Nakdong River Basin Using Nonstationary Frequency Analysis Model and Climate Information." Journal of the Korea Water Resources Association, Vol. 44, No. 5, pp. 339-350. https://doi.org/10.3741/JKWRA.2011.44.5.339
  15. Lee, C.H., Ahn, J.H., and Kim, T.W. (2010). "Evaluation of Probability Rainfalls Estimated from Non-Stationary Rainfall Frequency Analysis." Journal of the Korea Water Resources Association, Vol. 43, No. 2, pp. 187-199. https://doi.org/10.3741/JKWRA.2010.43.2.187
  16. Lee, J.J., Kwon, H.H., and Hwang, K.N. (2010). "Concept of Seasonality Analysis of Hydrologic Extreme Variables and Design Rainfall Estimation Using Nonstationary Frequency Analysis." Journal of the Korea Water Resources Association, Vol. 43, No. 8, pp. 733-745. https://doi.org/10.3741/JKWRA.2010.43.8.733
  17. Lee, S.B., Kim, K.D., and Heo, J.H. (2004). "Change and Trend Analyses of Rainfall Data." 2004 Korea Water Resource Society Annual Conference, KWRA, pp. 696-700.
  18. Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier, D.P., and Stouffer, R.J. (2008). "Stationarity is dead: whither water management?" Science, Vol. 319, No. 5863, pp. 573-574. https://doi.org/10.1126/science.1151915
  19. Nadarajah, S. (2005). "Extremes of daily rainfall in West Central Florida." Climate Change, Vol. 69, No. 2-3, pp. 325-342. https://doi.org/10.1007/s10584-005-1812-y
  20. Olsen, J.R., Stedinger, J.R., Matalas, N.C., and Stakhiv, F.Z. (1998). "Risk of extreme events under nonstationary conditions." Risk Analysis, Vol. 18, No. 4, pp. 497-510. https://doi.org/10.1111/j.1539-6924.1998.tb00364.x
  21. Olsen, J.R., Stedinger, J.R., Matalas, N.C., and Stakhiv, F.Z. (1999). "Climate variability and flood frequency estimation for the Upper Mississippi and Lower Missouri Rivers." Journal of the American Water Resources Association, Vol. 35, No. 6, pp. 1509-1524. https://doi.org/10.1111/j.1752-1688.1999.tb04234.x
  22. Parey, S., Malek, F., Laurent, C., and Dacunha-Castelle, D. (2007). "Trends and climate evolution: Statistical approach for very high temperatures in France." Climatic Change, Vol. 81, No. 3-4, pp. 331-352. https://doi.org/10.1007/s10584-006-9116-4
  23. Salas, J.D., and Obeysekera, J. (2013). "Return period and risk for nonstationary hydrologic extreme events." World Environmental and Water Resources Congress 2013, ASCE, Cincinnati, Ohio, pp. 1213-1223.
  24. Seo, L., Jeon, M.H., Kim, T.W., and Kim, S.D. (2012). "Ensemble Prediction of Future Design Rainfalls Considering Climate Change." Journal of the Korean Society of Hazard Mitigation, Korean Society of Hazard Mitigation, Vol. 12, No. 2, pp. 159-171. https://doi.org/10.9798/KOSHAM.2012.12.2.159
  25. Walter, M.D. (2007). Interpretation of Return Levels under a Changing Climate. B.S. dissertation, Pennsylvania State University.

Cited by

  1. Flood Frequency Analysis Considering Probability Distribution and Return Period under Non-stationary Condition vol.48, pp.7, 2015, https://doi.org/10.3741/JKWRA.2015.48.7.567
  2. Estimation of Future Design Flood Under Non-Stationarity for Wonpyeongcheon Watershed vol.57, pp.5, 2015, https://doi.org/10.5389/KSAE.2015.57.5.139
  3. Comparison Study on the Various Forms of Scale Parameter for the Nonstationary Gumbel Model vol.48, pp.5, 2015, https://doi.org/10.3741/JKWRA.2015.48.5.331
  4. Introduction and application of non-stationary standardized precipitation index considering probability distribution function and return period pp.1434-4483, 2018, https://doi.org/10.1007/s00704-018-2500-y