DOI QR코드

DOI QR Code

Design and Performance Evaluation of a 10kW Scale Counter-Rotating Wind Turbine Rotor

10kW급 상반전 풍력터빈 로터의 설계와 성능 평가에 관한 연구

  • Hoang, Anh Dung (Graduate School, Mokpo National Maritime University) ;
  • Yang, Chang-Jo (Department of Marine System Engineering, Mokpo National Maritime University)
  • 황안둥 (목포해양대학교 대학원) ;
  • 양창조 (목포해양대학교 기관시스템공학과)
  • Received : 2013.11.06
  • Accepted : 2014.02.25
  • Published : 2014.04.28

Abstract

The counter-rotating approach on wind turbine has been recently put in interest for its certain advantages in both design and performance. This paper introduces a study on a counter-rotating wind turbine designed and modeled using NREL airfoils S822 and S823. The aims of the study is to evaluate and discover the performance of the counter-rotating system, and compares to that of single rotor turbine of same design using numerical simulation. The results show higher performance of the counter-rotating system compared with single rotor case at TSR 3 to 5 but lower performance at higher TSR. This is due to the interaction between upstream and downstream rotors. Thus, the counter-rotating turbine is more efficient at low rotor rotational speed.

상반전 풍력터빈은 설계와 성능 관점에서 최근 각광을 받기 시작하고 있다. 본 논문은 NREL S822, S823을 이용하여 설계 및 모델링한 상반전 풍력터빈에 대해 연구를 수행하였다. 본 논문은 수치해석 기법을 통하여 단일 풍력터빈과 상반전 풍력터빈을 각각 설계하고, 그 성능을 다양한 조건에서 비교하고자 하였다. 그 결과 상반전 풍력터빈은 단일 풍력 터빈에 비해 TSR 3~5 영역에서 보다 높은 성능계수를 나타냈으며, 그 보다 더 높은 TSR 영역에서는 낮은 성능계수를 나타내었다. 이것은 로터 상 하류의 간섭의 간섭 때문이며, 또한 본 연구에서는 낮은 영역의 TSR에서 운전되는 상반전 풍력터빈의 유효성을 함께 보였다.

Keywords

References

  1. Betz, A.(1919), Schraubenpropeller mit Geringstem Energieverlust, Nach.der Kgl. Gesellschaft der Wiss. Zu Gottingen, Math-Phys. Klasse, pp. 193-217.
  2. Burton, T., D. Sharpe, N. Jenkins and E. Bossanyi(2011), Wind Energy Handbook, John Wiley & Sons Ltd, ISBN 13:978-0-471-48997-9 (H/B), pp. 42-46.
  3. Chantharasenawong C., B. Suwantragul and A. Ruangwiset (2008), Axial Momentum Theory for Turbines with Co-axial Counter Rotating Rotors, Commemorative International Conference of the Occasion of the 4th Cycle Anniversary of KMUTT, SDSE2008, pp. 2-5.
  4. Hartwanger, D. and A. Horvat(2008), 3D Modelling of a Wind Turbine Using CFD, NAFEMS Conference 2008, UK, pp. 6-7.
  5. Herzog, R., A. P. Schaffarczyk, A. Wacinski and O. Zurcher(2010), Performance and stability of a counter rotating windmill using a planetary gearing: Measurements and Simulation, In proceeding of: European Wind Energy Conference EWEC 2010, pp. 1-7.
  6. Ingram, G.(2011), Wind Turbine Blade Analysis Using the Blade Element Momentum Method, Version 1.1, pp. 5-15.
  7. Kumar, P. S., R. J. Bensinh, A. Abraham and S. Ilangovan (2013), Computational and Experimental Analysis of a Counter-Rotating Wind System, Iournal of Scientific & Industrial Research, Vol. 72, pp. 300-306.
  8. Newman, B. G.(1986), Multiple Actuator-Disc Theory for Wind Turbine, Journal of Wind Engineering and Industrial Aerodynamics, 24, pp. 215-225. https://doi.org/10.1016/0167-6105(86)90023-1
  9. Somers, D. M.(2005), The S822 and S823 Airfoils, National Renewable Energy Laboratory (NREL), US, NREL/SR-500-36342, pp. 2-3.
  10. Tangler, J. L. and D. M. Somers(1995), NREL Airfoil Families for HAWTs, National Renewable Energy Laboratory (NREL), US, AWEA 1995, pp. 3-5.

Cited by

  1. A Design of 10 kW Class Counter-Rotating Tidal Turbine Focusing on the Improvement of Operating Performance vol.18, pp.3, 2015, https://doi.org/10.5293/kfma.2015.18.3.053
  2. Computer Analysis of S822 Aerofoil Section for Blades of Small Wind Turbines at Low Wind Speed vol.139, pp.5, 2017, https://doi.org/10.1115/1.4037484
  3. Flow-driven simulation on variation diameter of counter rotating wind turbines rotor vol.154, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201815401111
  4. A Study on the Tidal Energy Yield Capability according to the Yaw Angle in Jangjuk Strait vol.25, pp.7, 2014, https://doi.org/10.7837/kosomes.2019.25.7.982