DOI QR코드

DOI QR Code

Isolation of Bacteria Associated with Fresh Sponges in Lake Baikal

바이칼 호수에 서식하는 담수 스폰지 내 공생세균의 분리

  • Cho, Ahn-Na (Division of Life Sciences, Korea Polar Research Institute) ;
  • Kim, Ju-Young (Department of Environmental Science, Kagnwon Natioal University) ;
  • Ahn, Tae-Seok (Department of Environmental Science, Kagnwon Natioal University)
  • Received : 2013.08.02
  • Accepted : 2013.10.31
  • Published : 2014.02.28

Abstract

Sponge in Lake Baikal is an unique organism. Microorganisms in sponges are assumed as precious resources for bioactive materials. For understanding the bacterial community in Baikalian sponges by cultivation, 92 strains of bacteria were isolated from lake water and 2 species of sponges, Baikalospongia sp. and Lubomirskia sp., Thirty five bacterial strains are isolated from ambient water near the sponge, 27 bacterial strains from Baikalospongia sp., 30 bacterial strains from Lubomirskia sp.. As a result, 78.3% and 57.6% of isolated bacterial strains has amylase and protease activity respectively, while strains with cellulose and lipase activities were 38.0% and 34.8%. By 16S rRNA sequence analysis of selected strains, 13 strains which were isolated from Baikalospongia sp. were belong to Pseudomonas spp.. Whereas, 14 strains which were isolated from Lubomirskia sp. were Pseudomonas spp., Buttiauxella agrestis, Pseudomonas fluorescens, Yersinia ruckeri, Bacillus spp., Paenibacillus spp., Bacillus thuringiensis, Bacillus simplex, Brevibacterium spp., Acinetobacter lwoffii. In culture media, Pseudomonas spp. dominance was supposed that according to allelophathy.

바이칼호에 서식하는 2종의 스폰지 체내 및 주변 물로부터 92개의 저온성 균주를 분리하고 각 균주들의 기질 분해능을 조사하였다. 그 결과 섬유소와 지방에 대한 분해 활성도를 갖는 균주는 38.0, 34.8%로 비교적 적었으나 전분과 단백질 분해 활성도를 갖는 균주는 78.3, 57.6%로 높은 비율로 나타났다. 분리한 세균을 염기서열의 유사도에 따라 분류하기 위하여 Genomic Fingerprinting을 실시한 후 31개 균주를 선별하여 동정한 결과, Baikalospongia sp.에서 분리한 13균주는 모두 Pseudomonas속으로 확인된 반면, Lubomirskia sp.에서 분리한 14균주는 Pseudomonas ssp., Buttiauxella agrestis, Pseudomonas fluorescens, Yersinia ruckeri, Bacillus ssp., Paenibacillus ssp., Bacillus thuringiensis, Bacillus simplex, Brevibacterium ssp., Acinetobacter lwoffii로 다양하게 동정되었다. 그러나 총 31개 균주 중 18개가 Pseudomonas속으로 동정된 것은 타감작용에 의한 다른 세균 성장의 방해 때문으로 평가되며, 이러한 일반적인 배양 방법의 한계점을 극복하기 위해서는 스폰지의 서식처와 세균의 검출 방법에 대하여 보다 다양한 심층적인 연구가 이루어져야 할 것으로 생각된다.

Keywords

References

  1. Amann, R.I., W. Ludwig and K. Schleifer. 1995. Phylogenetic Identification and In Situ Detection of Individual Microbial Cells without Cultivation. Microbiological Reviews 59: 143-169.
  2. Bollmann, A., K. Lewis and S.S. Epstein. 2007. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Applied and Environmental Microbiology 73: 6386-6390. https://doi.org/10.1128/AEM.01309-07
  3. Chokesajjawatee, N., Y.G. Zo and R.R. Colwell. 2008. Determination of Clonality and Relatedness of Vibrio cholerae Isolates by Genomic Fingerprinting, Using Long-Range Repetitive Element Sequence-Based PCR. Applied and Environmental Microbiology 74: 5392-5401. https://doi.org/10.1128/AEM.00151-08
  4. Cilliers, F.J., R.M. Warren, J.H. Hauman, I.J.F. Wiid and P.D. Van Helden. 1997. Oligonucleotide $(GTG)_5$ as an Epidemiological Tool in the Study of Nontuberculous Mycobacteria. Journal of Clinical Microbiology 35: 1545-1549.
  5. Cole, J.R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R.J. Farris, A.S. Kulam-Syed-Mohideen, D.M. McGarrell, T. Marsh, G.M. Garrity and J.M. Tiedje. 2009. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research 37: 141-145.
  6. Davis, K.E., S.J. Joseph and P.H. Janssen. 2005. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Applied and Environmental Microbiology 71: 823-834.
  7. Evans, J.D. 2003. Diverse origins of tetracycline resistance in the honey bee bacterial pathogen Paenibacillus larvae. Journal of invertebrate Pathology 33: 46-50.
  8. Fairbairn, D.J. and B.A. Law. 1986. Purification and characterization of the extracellular proteinase of Pseudomonas fluorescences NCDO 2085. Journal of Dairy Research 53: 457-466. https://doi.org/10.1017/S0022029900025073
  9. Friedrich, A.B., H. Merkert, T. Fendert, J. Hacker, P. Proksch and U. Hentschel. 1999. Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Marine Biology 134: 461-470. https://doi.org/10.1007/s002270050562
  10. Garrity, G.M., T.G. Lilburn, J.R. Cole, S.H. Harrison, J. Euzeby and B.J. Tindall. 2007. Taxonomic outline of the bacteria and archaea, release 7.7. Michigan State University Board of Trustees, East Lansing, MI, USA.
  11. Gigliarelli, L., L. Lucentini, A. Palomba, G. Sgaravizzi, H. Lancioni, L. Lanfaloni, P. Willenz, E. Gaino and F. Panara, 2008. Applications of PCR-RFLPs for differentiating two freshwater sponges: Ephydatia fluviatilis and Ephydatia mulleri. Hydrobiologia 605: 265-269. https://doi.org/10.1007/s10750-008-9327-y
  12. Grozdanov, L. and U. Hentschel. 2007. An environmental genomics perspective on the diversity and function of marine sponge-associated microbiota. Current Opinion in Microbiology 10: 215-220. https://doi.org/10.1016/j.mib.2007.05.012
  13. Handelsman, J. 2004. Metagenomics: Application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews 68: 669-685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
  14. Hentschel, U., K.M. Usher and M.W. Taylor. 2006. Marine sponges as microbial fermenters. FEMS Microbiology Ecology 55: 167-177. https://doi.org/10.1111/j.1574-6941.2005.00046.x
  15. Jung, Y.J., Y.C. Joung and T.S. Ahn. 2011. Characterization of Actinomyces Isolated from Freshwater Sponges in Lake Baikal. Korean Journal of Microbiol. 47: 130-136.
  16. Kozhova, O.M. and L.R. Izmest'eva, 1998. Lake Baikal - Evolution and Biodiversity, pp. 3-80, Backhuys Publishers, Leiden, The Netherlands.
  17. Lee, G.H., M.S. Bae, S.H. Park, H.G. Song and T.S. Ahn. 2004. Sole-Carbon-Source Utilization Patterns of Oligotrophic and Psychrotrophic Bacteria Isolated from Lake Baikal. Korean Journal of Microbiol. 40: 248-253.
  18. Liesack, W., H. Weyland and E. Stackebrandt. 1991. Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria. Microbial Ecology 21: 191-198. https://doi.org/10.1007/BF02539153
  19. Makevitt, A.L., S. Bajaksouzian, J.D. Klinger and D.E. Woods. 1989. Purification and characterization of an extracellular protease from Pseudomonas cepacia. Infection and Immunity 57: 771-778.
  20. Masuda, Y. 2009. Studies on the taxonomy and distribution of freshwater sponges in Lake Baikal. Progress in Molecular and Subcellular Biology 47: 81-110. https://doi.org/10.1007/978-3-540-88552-8_4
  21. Meyer, J.M. and M.A. Abdallah. 1978. The Fluorescent Pigment of Pseudomonas fluorescens : Biosynthesis, Purification and Physicochemical Properties. Journal of General Microbiology 107: 319-328. https://doi.org/10.1099/00221287-107-2-319
  22. Miyazaki, N. 1997. Animal community, environment and phylogeny in Lake Bakial. Otsuchi Marine Research Center, Ocean Research Institute, The University of Tokyo.
  23. Müller, W., E.G. Zahn, R.K. Kurelec, B.C. Lucu, I. Mller and G. Uhlenbruck. 1981. Lectin, a possible basis for symbiosis between bacteria and sponges. Journal of Bacteriology 145: 548-558.
  24. Mu, X., C. Yang and S. Wang. 2005. Allelopathy of Pseudomonas fluorescens: a preliminary study. The Journal of Applied Ecology 16(4): 778-779.
  25. Oldak, E. and E.A. Trafny. 2005. Secretion of Proteases by Pseudomonas aeruginosa Biofilms Exposed to Ciprofloxacin. Antimicrobial Agents and Chemotherapy 49: 3281-3288. https://doi.org/10.1128/AAC.49.8.3281-3288.2005
  26. Park, J.S., C.J. Sim and K.D. An. 2009. Community Structure of Bacteria Associated with Two Marine Sponges from Jeju Island Based on 16S rDNA-DGGE Profiles. Korean Journal of Microbiol. 45: 170-176.
  27. Parfenova, V.V., I.A. Terkina, T.I. Kostornova, I.G. Nikulina, V.I. Chernykh and E.A. Maksimova. 2008. Microbial community of freshwater sponges in Lake Baikal. Biology Bulletin 35: 374-379. https://doi.org/10.1134/S1062359008040079
  28. Seo, E.Y., M.R. Kim and T.S. Ahn. 2007. Community Analysis of the Bacteria in Sponges of Lake Baikal by FISH Method. Korean Journal of Microbiol. 43: 14-18.
  29. Stainer, R.Y., N.J. Palleroni and M. Doudoroff. 1966. The aerobic pseudomonads : A taxonomic study. Journal of General Microbiology 43: 159-271. https://doi.org/10.1099/00221287-43-2-159
  30. Tzipori, S.R., D. Walt and U. Zuckermann. 2007. Development and Evaluation of an Innovative System for the Concentration and Quantitative Detection of CCL Pathogens in Drinking Water. National Center For Enviromental Research.
  31. Wang, Q., G.M. Garrity, J.M. Tiedje and J.R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
  32. Wiens, M., P. Wrede, V.A. Grebenjuk, O.V. Kaluzhnaya, S.I. Belikov, H.C. Schruder and W.E. Muller. 2009. Towards a molecular systematics of the Lake Baikal/Lake Tuva sponges. Progress in Molecular and Subcellular Biology 47: 111-144. https://doi.org/10.1007/978-3-540-88552-8_5
  33. Webster, N.S., K.J. Wilson, L.L. Blackall and R.T. Hill. 2001. Phylogenetic Diversity of Bacteria Associated with the Marine Sponge Rhopaloeides odorabile. Applied and Environmental Microbiology 67: 434-444. https://doi.org/10.1128/AEM.67.1.434-444.2001