DOI QR코드

DOI QR Code

폴리유산/폴리부틸렌숙시네이트 블랜드의 가공 및 기계적, 열적, 형태학적 특성

Processing and Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Poly(butylene succinate) Blends

  • 김대근 (금오공과대학교 고분자공학과) ;
  • 조동환 (금오공과대학교 고분자공학과)
  • Kim, Dae Keun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Cho, Donghwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 투고 : 2014.02.18
  • 심사 : 2014.03.05
  • 발행 : 2014.03.30

초록

본 연구에서는 이축압출기와 사출기를 사용하여 폴리유산(PLA)와 폴리부틸렌숙시네이트(PBS) 수지의 함량비를 달리하여 PLA/PBS 블랜드를 제조하고, 그들의 기계적, 열적 특성 및 모폴로지를 조사하였다. PLA/PBS 블랜드의 굴곡강도, 굴곡탄성률, 인장강도 및 인장탄성률과 같은 기계적 특성, 그리고 용융거동, 동역학적 열특성 및 열안정성과 같은 열적 특성이 PLA와 PBS 함량비에 크게 의존하였다. 그러나 PLA/PBS 블랜드의 열변형온도는 PLA 또는 PBS 함량 변화에 크게 영향을 받지 않았다. 또한 PLA/PBS 블랜드의 파단면은 PBS 함량이 증가함에 따라 brittle 양상으로부터 ductile 양상으로 변화되었다.

In the present work, PLA/PBS blends with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) at different contents were processed by using a twin-screw extruder and an injection molding machine, and then their mechanical, thermal and morphological properties were investigated. The mechanical properties such as flexural strength, flexural modulus, tensile strength and tensile modulus and thermal properties such as melting behavior, dynamic mechanical thermal properties and thermal stability significantly depended on the contents of PLA and PBS. However, the heat deflection temperature of the blends was not significantly influenced by the contents of PLA and PBS. Also, the fracture surfaces of PLA/PBS blends were changed from a brittle pattern to a ductile pattern with increasing the PBS contents.

키워드

참고문헌

  1. A. K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999). https://doi.org/10.1016/S0079-6700(98)00018-5
  2. A. K. Mohanty, L. T. Drzal, D. Hokens, and M. Misra, Polym. Mater. Sci. Eng., 85, 594 (2001).
  3. D. Cho, S. G. Lee, W. H. Park, and S. O. Han, Polym. Sci. Tech., 13(4), 460 (2002).
  4. A. K. Mohanty, M. Misra, and L. T. Drzal, "Natural Fibers, Biopolymers, and Biocomposites," Eds., Taylor & Francis, Boca Raton (2005).
  5. D. Hokens, A. K. Mohanty, M. Misra, and L. T. Drzal, Polym. Prepr., 42(2), 71 (2001). https://doi.org/10.1016/S0032-3861(00)00322-0
  6. J. Rout, M. Misra, S. S. Tripathy, S. K. Nayak, and A. K. Mohanty, Polym. Comp., 22(6), 770 (2001). https://doi.org/10.1002/pc.10579
  7. M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Comp. Sci. Tech., 68, 424 (2008). https://doi.org/10.1016/j.compscitech.2007.06.022
  8. M. Harada, T. Ohya, K. Iida, H. Hayashi, K. Hirano, and H. Fukuda, J. Appl. Polym. Sci., 106, 1813 (2007). https://doi.org/10.1002/app.26717
  9. J. M. Seo, D. Cho, W. H. Park, S. O. Han, T. W. Hwang, C. H. Choi, and S. J. Jung, J. Biobased Mater. Bioener., 1, 331 (2007). https://doi.org/10.1166/jbmb.2007.007
  10. J. Y. Lee, J. M. Kim, D. Cho, and J. K. Park, J. Adh. Interf., 10(2), 106 (2009).
  11. T. Yokohara and M. Yamaguchi, Euro. Polym. J., 44, 677 (2008). https://doi.org/10.1016/j.eurpolymj.2008.01.008
  12. M. Shibata, Y. Inoue, and M. Miyoshi, Polymer, 47, 3557 (2006). https://doi.org/10.1016/j.polymer.2006.03.065
  13. K. Hong, K. Nakayama, and S. Park, Euro. Polym. J., 30, 305 (2002).
  14. A. M. Harris and E. C. Lee, J. Appl. Polym. Sci., 107, 2246 (2008). https://doi.org/10.1002/app.27261
  15. A. Bhatia, R. K. Gupta, S. N. Bahattacharya, and H. J. Choi, Korea-Australia Rheo. J., 19(3), 125 (2007).
  16. M. Harada, T. Ohya, K. Iida, H. Hayashi, K. Hirano, and H. Fukuda, J. Appl. Polym Sci., 106, 1813 (2007). https://doi.org/10.1002/app.26717
  17. H. Chen, M. Pyda, and P. Cebe, Thermochim. Acta, 492, 61 (2009). https://doi.org/10.1016/j.tca.2009.04.023
  18. F. Signori, M. B. Coltelli, and S. Bronco, Polym. Degrad. Stab., 94, 74 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.10.004

피인용 문헌

  1. 건축자재용 폴리락타이드의 난연성 향상에 관한 연구 vol.21, pp.2, 2014, https://doi.org/10.5345/jkibc.2021.21.2.113