DOI QR코드

DOI QR Code

Feasibility Study on Removal of Total Suspended Solid in Wastewater with Compressed Media Filter

압축성 여재 여과를 이용한 하수의 고형물질 제거 타당성 연구

  • Kim, Yeseul (Department of Civil and Environmental Engineering and Urban Design and Studies, Chung-Ang University) ;
  • Jung, Chanil (University of South Carolina, Department of Civil and Environmental Engineering) ;
  • Oh, Jeill (Department of Civil and Environmental Engineering and Urban Design and Studies, Chung-Ang University) ;
  • Yoon, Yeomin (University of South Carolina, Department of Civil and Environmental Engineering)
  • 김예슬 (중앙대학교 사회기반시스템공학부) ;
  • 정찬일 (사우스캐롤라이나 주립대학교 토목환경공학과) ;
  • 오재일 (중앙대학교 사회기반시스템공학부) ;
  • 윤여민 (사우스캐롤라이나 주립대학교 토목환경공학과)
  • Received : 2013.12.16
  • Accepted : 2014.01.17
  • Published : 2014.02.28

Abstract

Recently, as a variety of techniques of CMF (Compressed media filter) that has advantages of high porosity and compressibility have been developed in the U.S. and Japan. Therefore, the interest of intensive wastewater treatment using CMF has grown. This study examined the feasibility of CMF with varying sewage water quality to determine the optimum operating conditions. A preliminary tracer test that investigated the filtering process under various compression and flow rate conditions was performed. In a high compression condition, different porosities were applied to each depth of the column. Therefore, a distinct difference between a theoretical value and results of tracer test was observed. For the TSS (Total suspended solid) removal and particle size distribution of CMF for pre-treatment water under the various compression conditions, the compression ratio of 30 percent as the optimal condition showed greater than 70% removal efficiency. In addition, the compression ratio of >15% was required to remove small-sized particles. Also, an additional process such as coagulation is necessary to increase the removal efficiency for < $10{\mu}m$ particles, since these small particles significantly influence the effluent concentration. Modeling results showed that as the compression rate was increased, TSS removal efficiency in accordance with each particle size in the initial filtration was noticeably observed. The modeling results according to the depth of column targeting $10{\mu}m$ particles having the largest percentage in particle size distribution showed that 150-300 mm in filter media layer was the most active with respect to the filtering.

최근 미국과 일본을 중심으로 높은 공극과 압축성이라는 장점을 지닌 압축성 섬유여재 여과에 대한 다양한 기술이 개발되면서 이를 이용한 집약적 하 폐수 처리에 대한 관심이 높아지고 있다. 이에 따라 본 연구에서는 다양한 유입수질의 하수에 대하여 압축성 섬유여재 여과의 적용성을 검토하고자 하며, 해당 유입수에 대한 최적의 운전조건을 도출하고자 한다. 이를 위하여 예비 실험으로서 추적자 시험을 진행하였으며, 이를 통하여 다양한 압축률 및 여과율에서의 여과 양상을 검토하였다. 그 결과 높은 압축률에서 높이에 따라 다른 공극률이 적용되어 이론적인 결과값과의 뚜렷한 차이를 관찰할 수 있었다. 하수처리장의 침사지 유출수를 대상으로 다양한 압축률 조건에서 압축성 섬유여재 여과의 TSS 제거 및 제거 입자크기분포를 살펴본 결과, 압축률 30%가 최적의 운전조건으로서 제거효율 70% 이상을 나타냈으며, 작은 크기의 입자 제거율 증대를 위해 최소 15% 이상의 압축률이 요구되었다. 또한 여과 유출수 농도의 주요 영향인자인 $10{\mu}m$ 이하 입자의 제거 효율을 증대시키기 위해서는 응집과 같은 추가 공정이 필요하다고 판단되었다. 모델링 결과를 통하여 압축률이 증가할수록 여과 초기에 입자 크기에 따른 TSS 제거효율이 두드러지게 나타남을 관찰하였고, 유입수의 입자크기분포에서 가장 큰 비율을 차지하는 $10{\mu}m$ 크기 입자를 대상으로 높이에 따른 모델링 결과 높이 150-300 mm 여재층이 해당 입자 크기에 대하여 가장 활발한 여과 작용을 나타내었다.

Keywords

References

  1. True, B., Johnson, W. and Chen, S., "Reducing phosphorus discharge from flow-through aquaculture: III: assessing highrate filtration media for effluent solids and phosphorus removal," Aquac. Eng., 32(1), 161-170(2004). https://doi.org/10.1016/j.aquaeng.2004.08.004
  2. Caliskaner, O., Tchobanoglous, G. and Carolan, A., "Highrate filtration with a synthetic compressible media," Water Environ. Res., 71(6), 1171-1177(1999).
  3. Fitzpatrick, J., Weaver, T., Boner, M., Anderson, M., O'Bryan, C. and Tarallo, S., "Wet-Weather Piloting Toward the Largest Compressible Media Filter on the Planet," WEFTEC, 81-90, 5337-5353(2011).
  4. Steve, G., "Reuse helps meet water demand : Southern Florida communities rely on upgraded wastewater treatment technology to supply reuse water for irrigation, easing potable water demand," CENEWS, September(2007).
  5. 下水道機構ホ一ムペ一ジ, "SPIRIT 21 : Sewage Project, Integrated and Revolutionary Technology for 21st Century," (2005).
  6. Tchobanoglous, G., Burton, F. L. and Stensel, H. D., "Wastewater engineering: Treatment and Reuse," McGraw-Hill (2004).
  7. Caliskaner, O. and Tchobanoglous, G., "Modeling depth filtration of activated sludge effluent using a compressible medium filter," Water Environ. Res., 77(7), 3080-3091(2005). https://doi.org/10.2175/106143005X73983
  8. U. S. Environmental Protection Agency, "Continuous Deflection Separation, Fuzzy Filter and UV Treatment of SSO-Type Wastewaters: Pilot Study Results,"(2002).
  9. Hsiung, K.-Y. and Cleasby, J. L., "Prediction of filter performance," J. Sanitary Eng. Division, 94, 1043-1069(1968).
  10. Tien, C., Turian, R. M. and Pendse, H., "Simulation of the dynamic behavior of deep bed filters," AIChE J., 25(3), 385-395(1979). https://doi.org/10.1002/aic.690250302
  11. Iwasaki, T., Slade, J. and Stanley, W. E., "Some notes on sand filtration," J. Am. Water Works Ass., 29(10), 1591-1602(1937).
  12. Ives, K., "Rational design of filters," Thomas Telford, pp. 189-193(1960).
  13. Ives, K., "Rapid filtration," Water Res., 4(3), 201-223(1970). https://doi.org/10.1016/0043-1354(70)90068-0
  14. Mackrle, V., Dracka, O. and Svec, J., "Hydrodynamics of the disposal of low level liquid radioactive wastes in soil," International Atomic Energy Agency Contract Report, 98, (1965).
  15. Mackie, R. and Bai, R., "The role of particle size distribution in the performance and modelling of filtration," Water Sci. Technol., 27(10), 19-34(1993).
  16. Chang, J. and Vigneswaran, S. "Mathematical modelling of the effect of size distribution on suspended particles in deepbed filtration," Aquat., 39(2), 96-100(1990).
  17. Darby, J. L., Attanasio, R. E. and Lawler, D. F. "Filtration of heterodisperse suspensions: Modeling of particle removal and head loss," Water Res., 26(6), 711-726(1992). https://doi.org/10.1016/0043-1354(92)90002-L
  18. Bear, J., "Dynamics of fluids in porous media," Dover Publications.com(2013).
  19. Gerke, H. and Genuchten, M. V., "A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media," Water Res. Res., 29(2), 305-319(1993). https://doi.org/10.1029/92WR02339
  20. Lin, Y.-F., Jing, S.-R., Lee, D.-Y. and Wang, T.-W., "Nutrient removal from aquaculture wastewater using a constructed wetlands system," Aquaculture, 209(1-4), 169-184(2002). https://doi.org/10.1016/S0044-8486(01)00801-8
  21. Jimenez1, B., Chavez1, A., Leyva1, A. and Tchobanoglous, G., "Sand and synthetic medium filtration of advanced primary treatment effluent from Mexico Cit," Water Res., 34(2), 473-480(2000). https://doi.org/10.1016/S0043-1354(99)00180-3
  22. Elmar, B., Astrid, K., Dirk, E., Frank, S., Georg, D., Michael, H. P., Wolf, U. R., Ralf, T. S. and Thomas, K., "Particle size distribution and strain rate attenuation in hypervelocity impact and shock recovery experiments," J. Struct. Geol., 56, 20-33(2013). https://doi.org/10.1016/j.jsg.2013.08.007
  23. Ebeling, J. M., Welsh, C. F. and Rishel, K. L. "Performance evaluation of an inclined belt filter using coagulation/flocculation aids for the removal of suspended solids and phosphorus from microscreen backwash effluent," Aquac. Eng., 35(1), 61-77(2006). https://doi.org/10.1016/j.aquaeng.2005.08.006
  24. Rubenstein, D. I. and Koehl, M. "The mechanisms of filter feeding: some theoretical considerations," American Naturalist, pp. 981-994(1997).