DOI QR코드

DOI QR Code

Leaching Property of Coal Fly Ash Using Water as the Solvent and Its Carbonation Performance

석탄 비산재의 물에 대한 침출 특성과 탄산화 성능에 관한 연구

  • Shin, Jiyoon (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Han, Sang-Jun (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Wee, Jung-Ho (Department of Environmental Engineering, The Catholic University of Korea)
  • 신지윤 (가톨릭대학교 환경공학과) ;
  • 한상준 (가톨릭대학교 환경공학과) ;
  • 위정호 (가톨릭대학교 환경공학과)
  • Received : 2012.12.07
  • Accepted : 2014.03.10
  • Published : 2014.03.31

Abstract

The present paper investigates the leaching property of coal fly ash (FA) using distilled water as solvent and its performance of mineral carbonation. The highest leaching efficiency is obtained at 100 min after leaching begins and the overall leaching efficiencies of Ca and Na via five consecutive leachings were calculated to be 25.37% and 7.40%, respectively. In addition, because $Ca(OH)_2$ produced during the leaching reacts with $SiO_2$ which is the major component of FA, the Pozzolanic reaction may occur and thus reduces leaching efficiency. Total carbonation capacity of FA by absorbing $CO_2$ into FA leachates is 6.08 mg $CO_2/g$ FA and the contribution of alkali substances such as Ca, Na, Mg and K to this value is calculated to be 5.19 mg $CO_2/g$ FA. Carbonation efficiencies of Ca and Na based on leachates are 85.62% and 77.70%, respectively. On the other hand, the ratios of Ca and Na in raw FA to participate in carbonation are calculated to be 9.04% and 5.26%, respectively.

본 논문은 상온에서 물을 이용하여 석탄 화력 발전소에서 배출되는 비산재(Coal fly ash, FA)의 침출 특성과 탄산염 광물화 성능에 관해 연구하였다. 침출률은 100분에서 가장 높았고 5회를 통한 비산재 내 Ca와 Na의 총 침출률은 각각 25.37%와 7.40%로 측정되었다. 또한, 비산재 침출 시 생성되는 $Ca(OH)_2$와 비산재의 주성분인 $SiO_2$가 반응하여 포졸란 반응이 일어나 침출률을 저하시키는 것으로 판단된다. 침출 여과액을 통한 비산재의 탄산화 성능는 6.08 mg $CO_2/g$ FA로 측정되었으며 이중 Ca, Mg, Na, 및 K 성분이 기여한 값은 5.19 mg $CO_2/g$ FA로 약 85%로 계산되었다. 또한 침출액 기준 Ca와 Na의 탄산화율은 각각 85.62%와 77.70%이며 비산재 기준 Ca와 Na의 탄산화율은 각각 9.04%와 5.26%로 확인되었다.

Keywords

References

  1. Shim, J. G., Kim, J. H., Jang, K. R. and Eum, H. M., "Absorption characteristics of MEA with carbon dioxide from the real flue gas using a pilot plant," J. Kor. Soc. Environ. Eng., 25(12), 1557-1563(2003).
  2. Oh, K. J., Lee, S. S., Choi, W. J., Lee, J. J. and Shon, B. H., "Absorption and regeneration characteristics of carbon dioxide by aqueous MEA/AMP solutions," J. Kor. Soc. Environ. Eng., 25(5), 609-615(2003).
  3. Wee, J. H., Kim, J. I., Song, I. S. and Song, B. Y., "Reduction of carbon-dioxide emission applying carbon capture and storage (CCS) technology to power generation and industry sectors in Korea," J. Kor. Soc. Environ. Eng., 30(9), 961-972(2008).
  4. Min, B. M., "Status of $CO_2$ capturing technologies in post combustion," KIC News, 12(1), 15-29(2009).
  5. Song, H. J., Lee, S. M., Lee, J. H., Park, J. W., Jang, K. R., Shim, J. G. and Kim, J. H., "Absorption of carbon dioxide into aqueous potassium salt of serine," J. Kor. Soc. Environ. Eng., 31(7), 505-514(2009).
  6. Huijgen, W. J. J., Witkamp, G. and Comans, R. N. J., "Mechanisms of aqueous wollastonite carbonation as a possible $CO_2$ sequestration process," Chem. Eng. Sci., 61(13), 4242-4251(2006). https://doi.org/10.1016/j.ces.2006.01.048
  7. http://www.ipcc.ch/pdf/special-reports/srccs/srccs_chapter7.pdf
  8. Han, K. W., Rhee, C. H. and Chun, H. D., "Feasibility of mineral carbonation technology as a $CO_2$ storage measure considering domestic industrial environment," Kor. Chem. Eng. Res., 49(2), 137-150(2011). https://doi.org/10.9713/kcer.2011.49.2.137
  9. Chae, S. C., Jang, Y. N. and Ryu, K. W., "Mineral carbonation as a sequestration method of $CO_2$," J. Geol. Soc. Kor., 45(5), 527-555(2009).
  10. Kim, H. S., Chae, S. C., Ahn, J. H. and Jang, Y. N., "Technology Trends : $CO_2$ sequestration technology via mineral carbonation," Mineral. Sci. Ind., 22(1), 71-85(2009).
  11. Huijgen, W. J. J. and Comans, R. N. J., "Carbon dioxide sequestration by mineral carbonation," Energy Research Center of The Netherlands, Literature review, ECN-C-03-016(2003).
  12. Nyambura, M. G., Mugera, G. W., Felicia, P. L. and Ga thura, N. P., "Carbonation of brine impacted fractionated coal fly ash: Implications for $CO_2$ sequestration," J. Environ. Manage., 92(3), 655-664(2011). https://doi.org/10.1016/j.jenvman.2010.10.008
  13. Ahmaruzzaman, M., "A review on the utilization of fly ash," Prog. Energy Combust. Sci., 36(3), 327-363(2010). https://doi.org/10.1016/j.pecs.2009.11.003
  14. Fauth, D. J., Soong, Y. and White, C. M., "Carbon sequestration utilizing industrial solid residues," ACS Division Fuel Chem. Division Preprints, 47(1), 37-38(2002).
  15. Anthony, E. J., Bulewicz, E. M., Dudek, K. and Kozak, A., "The long term behavior of CFBC ash-water system," Waste Manage., 22(1), 99-111(2002). https://doi.org/10.1016/S0956-053X(01)00059-9
  16. Gray, M. L., Soong, Y., Champagne, K. J., Baltrus, J., Stevens, Jr., R. W., Toochinda, P. and Chuang, S. S. C., "$CO_2$ capture by amine-enriched fly ash carbon sorbents," Sep. Purif. Technol., 35(1), 31-36(2004). https://doi.org/10.1016/S1383-5866(03)00113-8
  17. Maroto-Valer, M. M., Lu, Z., Zhang, Y. and Tang, Z., "Sorbents for $CO_2$ capture from high carbon fly ashes," Waste Manage., 28(11), 2320-2328(2008). https://doi.org/10.1016/j.wasman.2007.10.012
  18. Uliasz-Bochenczyk, A., Mokrzycki, E., Piotrowski, Z. and PomykaIa, P., "Estimation of $CO_2$ sequestration potential via mineral carbonation in fly ash from lignite combustion in Poland," Energy Procedia, 1(1), 4873-4879(2009). https://doi.org/10.1016/j.egypro.2009.02.316
  19. Montes-Hernandez, G., Perez-Lopez, R., Renard, F., Nieto, J. M. and Charlet, L., "Mineral sequestration of $CO_2$ by aqueous carbonation of coal combustion fly-ash," J. Hazard. Mater., 161(2-3), 1347-1354(2009). https://doi.org/10.1016/j.jhazmat.2008.04.104
  20. Olivares-Marin, M., Drage, T. C. and Maroto-Valer, M. M., "Novel lithium-based sorbents from fly ashes for $CO_2$ capture at high temperatures," Int. J. Greenhouse Gas Control, 4(4), 623-629(2010). https://doi.org/10.1016/j.ijggc.2009.12.015
  21. Gray, M. L., Champagne, K. J., Soong, Y. and Finseth, D. H., "Parametric study of the column oil agglomeration of fly ash," Fuel, 80(6), 867-871(2001). https://doi.org/10.1016/S0016-2361(00)00151-4
  22. Reddy, K. J., John, S., Weber, H., Argyle, M. D., Bhattacharyya, P., Taylor, D. T., Christensen, M., Foulke, T. and Fahlsing, P., "Simultaneous capture and mineralization of coal combustion flue gas carbon dioxide ($CO_2$)," Energy Procedia, 4, 1574-1583(2011). https://doi.org/10.1016/j.egypro.2011.02.027
  23. http://www.hankyung.com/news/app/newsview.php?aid=2010041470741
  24. http://www.ceric.net/news/detail_02.asp?p=CERIC&tb=pubnews&code=cericnews&num=14736&ref=&page=1&startpage=1&key=&k_s=0&k_e=0&k_w=0§ion_code=3
  25. http://www.hankyung.com/news/app/newsview.php?aid=2010041470741
  26. http://www.epic.or.kr/cont/yearbook/2010/yb2010_chap02_8.pdf
  27. KISTI, "Prospect of recycling and alternative performance of fly ash as the cement clinker," February(2003).
  28. Schramke, J. A., "Neutralization of alkaline coal fly ash leachates by $CO_2$(g)," Appl. Geochem., 7(5), 481-492(1992). https://doi.org/10.1016/0883-2927(92)90008-Q
  29. Tawfic, T. A., Reddy, K. J., Gloss, S. P. and Drever, J. I., "Reaction of $CO_2$ with clean-coal technology ash to reduce trace-element mobility," Water, Air, Soil Pollut., 84(3-4), 385-398(1995). https://doi.org/10.1007/BF00475350
  30. Soong, Y., Fauth, D. L., Howard, B. H., Jones, J. R., Harrison, D. K., Goodman, A. L., Gray, M. L. and Frommell, E. A., "$CO_2$ sequestration with brine solution and fly ashes," Energy Convers. Manage., 47(13-14), 1676-1685(2006). https://doi.org/10.1016/j.enconman.2005.10.021
  31. Back, M., Kuehn, M., Stanjek, H. and Peiffer, S., "Reactivity of alkaline lignite fly ashes towards $CO_2$ in water," Environ. Sci. Technol., 42(12), 4520-4526(2008). https://doi.org/10.1021/es702760v
  32. Dilmore, R. M., Howard, B. H., Soong, Y., Griffith, C., Hedges, S. W., Degalbo, A. D., Morreale, B., Baltrus, J. P., Allen, D. E. and Jaw, K. F., "Sequestration of $CO_2$ in mixtures of caustic byproduct and saline waste water," Environ. Eng. Sci., 26(8), 1325-1333(2009). https://doi.org/10.1089/ees.2008.0395
  33. Lee, S. H., "On the pozzolani reaction," Kor. Chem. Assoc., 158, 40-44(2003).
  34. Choi, J. G., Han, H. K. and Mo, S. Y., "Analysis of chemical formula of briquette ash-pozzolan before and after $SO_2$ adsorption and its adsorption characteristics," J. Kor. Soc. Environ. Eng., 16(1), 5-12(1994).
  35. Chang, P. K. and Kim, Y. J., "Pozzolanic properties of fly ash from a coal fired power plant," J. Kor. Ceram. Soc., 40 (7), 702-708(2003). https://doi.org/10.4191/KCERS.2003.40.7.702
  36. Yoo, M. R., Han, S. J., Shin, J. Y. and Wee, J. H., "A study on carbon dioxide capture performance of KOH aqueous solution via chemical absorption," J. Kor. Soc. Environ. Eng., 34(1), 55-62(2012). https://doi.org/10.4491/KSEE.2012.34.1.055

Cited by

  1. Kinetics and Isotherm Analysis of Valuable Metal Ion Adsorption by Zeolite Synthesized from Coal Fly Ash vol.27, pp.2, 2018, https://doi.org/10.5322/JESI.2018.27.2.83