DOI QR코드

DOI QR Code

The Influence of Thermal Condition on the Variation of Reaction Product Composition depending on the Constituent of Dolomite in the Absorption Process of SO2 by Dolomite

Dolomite에 의한 SO2 흡수공정에서 Dolomite 조성에 따른 생성물질 구성 변화에 대한 열적 조건 영향

  • You, Dong-Ju (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Dong-Su (Department of Environmental Science and Engineering, Ewha Womans University)
  • 유동주 (이화여자대학교 환경공학과) ;
  • 김동수 (이화여자대학교 환경공학과)
  • Received : 2013.08.22
  • Accepted : 2014.01.23
  • Published : 2014.04.30

Abstract

The thermal effect on the compositional change of the $SO_2$ absorption process product was investigated compared with the composition of raw material when dolomite is employed in place of lime in the scrubbing process based on thermodynamic estimation. It was considered that the equilibrium reactions which directly related with the formation of $CaSO_4$ and $MgSO_4$, the absorption process products, are those between $Ca^{2+}$ and $Ca(OH)_2$, $Mg^{2+}$ and $Mg(OH)_2$, and the secondary dissociation reaction of $H_2SO_4$. It was thought to be necessary to examine the enthalpy change for the formation reactions of $CaSO_4$ and $MgSO_4$ along with the thermal feature of the relative reactions to figure out the influence of temperature on the compositional change of absorption process products. The stable regions for $Ca(OH)_2$ and $Mg(OH)_2$ in Pourbaix diagram were found to be increased as temperature rises and the equilibrium reaction between $Ca^{2+}$ and $Ca(OH)_2$ was investigated to be more strongly influence by temperature change compared with the equilibrium reaction between $Mg^{2+}$ and $Mg(OH)_2$. The amounts of $CaSO_4$ and $MgSO_4$ were anticipated to be decreased with temperature considering the thermal characteristics for the equilibrium reactions regarding calcium, magnesium, and $H_2SO_4$. It was understood that the formation ratio between $CaSO_4$ and $MgSO_4$ is greater than the composition ratio between calcium and magnesium contained in dolomite at specific temperature and the decrease of the formation ratio of $CaSO_4$ and $MgSO_4$ with temperature was estimated to be diminished as the content of calcium in dolomite is increased. In addition, the extent of the change in the compositional ratio between absorption process products was examined to be reduced compared with the composition of raw material as the calcium content in dolomite is raised.

석회를 대치하여 돌로마이트를 $SO_2$ 흡수공정에 사용하는 경우에 대하여 돌로마이트의 조성에 따른 생성물질의 구성 변화에 미치는 열적 효과를 열역학적 산정 방안을 적용해 검토하였다. $SO_2$의 수중 용해 시 흡수공정의 산물인 $CaSO_4$$MgSO_4$의 형성에 직접적으로 관련되는 반응은 $Ca^{2+}/Ca(OH)_2$ 평형반응과 $Mg^{2+}/Mg(OH)_2$ 평형반응, 그리고 $H_2SO_4$의 2차 해리 반응인 것으로 고려되었다. 돌로마이트의 조성 대비 $CaSO_4$$MgSO_4$의 구성비의 변화에 미치는 온도의 영향을 파악하기 위해서는 이들 평형반응에 미치는 온도의 효과와 함께 $CaSO_4$$MgSO_4$ 생성 반응의 엔탈피 변화를 조사할 필요가 있을 것으로 사료되었다. 온도 증가 시 Pourbaix Diagram 상에서의 $Ca(OH)_2$$Mg(OH)_2$ 의 안정영역은 증가하였으며 $Ca^{2+}$$Ca(OH)_2$ 간의 평형반응은 $Mg^{2+}$$Mg(OH)_2$ 간의 평형반응에 비해 온도의 영향을 더욱 크게 받는 것으로 파악되었다. Ca와 Mg, 그리고 $H_2SO_4$의 수중 평형반응들에 대한 열적 특성에 의거하여 온도가 상승함에 따라 $CaSO_4$$MgSO_4$의 생성량은 감소될 것으로 예상되었다. 돌로마이트에 포함된 칼슘과 마그네슘의 조성 대비 $CaSO_4$$MgSO_4$의 생성비는 동일한 온도 조건에서 더 큰 값을 보이는 것으로 파악되었으며 돌로마이트 중의 칼슘 함량이 증대될수록 온도 상승에 따른 $CaSO_4$$MgSO_4$의 생성비의 감소는 상대적으로 작아지는 것으로 검토되었다. 또한, 돌로마이트에 포함된 칼슘 성분의 함량 증가에 따라 돌로마이트의 조성과 비교한 생성물질의 구성비의 변화정도는 감소되는 것으로 파악되었다.

Keywords

References

  1. Morin, D., Pinches, T., Huisman, J., Frias, C., Norberg, A., and Forssberg, E., 2008 : Progress after three years of BioMinE-Research and Technological Development project for a global assessment of biohydrometallurgical processes applied to European non-ferrous metal resources, Hydrometallurgy, 94(1), pp. 58-68. https://doi.org/10.1016/j.hydromet.2008.05.050
  2. Hawksworth, D. L., and Rose, F., 1970 : Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens, Nature, 227(5254), pp. 145-8. https://doi.org/10.1038/227145a0
  3. Lisovskii, A., Semiat, R., and Aharoni, C., 1997 : Adsorption of sulfur dioxide by active carbon treated by nitric acid : I. Effect of the treatment on adsorption of $SO_2$ and extractability of the acid formed, Carbon, 35(10), pp. 1639-1643. https://doi.org/10.1016/S0008-6223(97)00129-2
  4. Daines, R. H., Leone, I., and Brennan, E., 1952 : The Effect of fluorine on plants as determined by soil nutrition and fumigation studies. McCabe, L.C., ed. Air pollution, Proceedings of the united States Technical conference on, pp. 97.
  5. French, J. G., Lowrimore, G., Nelson, W. C., Finklea, J. F., English, T., and Hertz, M., 1973 : The effect of sulfur dioxide and suspended sulfates on acute respiratory disease, Archives of Environmental Health : An International Journal, 27(3), pp. 129-133 https://doi.org/10.1080/00039896.1973.10666340
  6. Hikita, H., Asai, S., and Tsuji, T., 1977 : Absorption of sulfur dioxide into aqueous sodium hydroxide and sodium sulfite solutions, AIChE Journal, 23(4), pp. 538-544. https://doi.org/10.1002/aic.690230419
  7. Siagi, Z. O., Mbarawa, M., Mohamed, A. R., Lee, K. T., and Dahlan, I., 2007 : The effects of limestone type on the sulphur capture of slaked lime, Fuel, 86(17), pp. 2660-2666. https://doi.org/10.1016/j.fuel.2007.03.034
  8. SHINYA, O., and Ishikawa, H., 1966 : Sulfur isotopic fractionation between sulfur and sulfuric acid in the hydrothermal solution of sulfur dioxide, Geochemical Journal, 1, pp. 45-50. https://doi.org/10.2343/geochemj.1.45
  9. Park, K., and Warshaw, A., U.S., Patent No. 3,632,306. 1972. Washington, DC: U.S. Patent and Trademark Office.
  10. Sanders, J. F., Keener, T. C., and Wang, J., 1995 : Heated fly ash/hydrated lime slurries for $SO_2$ removal in spray dryer absorbers, Industrial & engineering chemistry research, 34(1), pp. 302-307. https://doi.org/10.1021/ie00040a032
  11. Folk, R. L., and Land, L. S., 1975 : Mg/Ca ratio and salinity: two controls over crystallization of dolomite, AAPG bulletin, 59(1), pp. 60-68.
  12. Eadington, P. J., Lisk, M., and Krieger, F. W., U.S., Patent No. 5,543,616. 1996, Washington, DC : U.S. Patent and Trademark Office.
  13. Goodsel, A. J., Low, M. J. D., and Takezawa, N., 1972 : Reactions of gaseous pollutants with solids. II. Infrared study of sorption of sulfur dioxide on magnesium oxide, Environmental Science & Technology, 6(3), pp. 268-273. https://doi.org/10.1021/es60062a001
  14. Gitelis, S., Piasecki, P., Turner, T., Haggard, W., Charters, J., and Urban, R, 2001 : Use of a calcium sulfate-based bone graft substitute for benign bone lesions, Orthopedics, 24(2), pp. 162-166.
  15. Snoeyink, V. and Jenkins, D., 1980 : Water Chemistry, John Wiley and Sons, New York, pp90-91.
  16. Baek, J.I. and Lee, T.W., 2002 : Study on the Improvement of Ion Detectability by Ion Exchange Resins, Theories and Applications of Chem. Eng., 8(2), pp. 3297-3300.
  17. Pourbaix, M., 1966 : Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford, pp. 147-150.