DOI QR코드

DOI QR Code

THE RELATION BETWEEN MCSHANE INTEGRAL AND MCSHANE DELTA INTEGRAL

  • Park, Jae Myung (Department of Mathematics Chungnam National University) ;
  • Lee, Deok Ho (Department of Mathematics Education KongJu National University) ;
  • Yoon, Ju Han (Department of Mathematics Education Chungbuk National University) ;
  • Kim, Young Kuk (Department of Mathematics Education Seowon University) ;
  • Lim, Jong Tae (Department of Mathematics Chungnam National University)
  • Received : 2013.12.24
  • Accepted : 2014.01.16
  • Published : 2014.02.15

Abstract

In this paper, we define an extension $f^*:[a,\;b]{\rightarrow}\mathbb{R}$ of a function $f:[a,\;b]_{\mathbb{T}}{\rightarrow}\mathbb{R}$ for a time scale $\mathbb{T}$ and show that f is McShane delta integrable on $[a,\;b]_{\mathbb{T}}$ if and only if $f^*$ is McShane integrable on [a, b].

Keywords

References

  1. R. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math. 35 (1999), 3-22 https://doi.org/10.1007/BF03322019
  2. S. Avsec, B. Bannish, B. Johnson, and S. Meckler, The Henstock-Kurzweil delta integral on unbounded time scales, PanAmerican Math. J. 16 (2006), no. 3, 77-98.
  3. G. Sh. Guseinov, Intergration on time scales, J. Math. Anal. Appl. 285 (2003), 107-127. https://doi.org/10.1016/S0022-247X(03)00361-5
  4. G. Sh. Guseinov and B. Kaymakcalan, Basics of Riemann delta and nabla integration on time scales, J. Difference Equations Appl. 8 (2002), 1001-1027. https://doi.org/10.1080/10236190290015272
  5. J. M. Park, D. H. Lee, J. H. Yoon, and J. T. Lim, The Henstock and Henstock delta Integrals, J. Chungcheng Math. Soc. 26 (2013), no. 2, 291-298.
  6. J. M. Park, D. H. Lee, J. H. Yoon, Y. K. Kim, and J. T. Lim, The relation between Henstock integral and Henstock delta Integral on time scales, J. Chungcheng Math. Soc. 26 (2013), no. 3, 625-630. https://doi.org/10.14403/jcms.2013.26.3.625
  7. A. Perterson and B. Thompson, Henstock-Kurzweil Delta and Nabla Integral, J. Math. Anal. Appl. 323 (2006), 162-178. https://doi.org/10.1016/j.jmaa.2005.10.025
  8. C. W. Swartz and D. S. Kurtz, Theories of Integration: The Integrals of Riemann Lebesgue, Henstock-Kurzweil, and Mcshane, World Scientific, 2004.
  9. B. S. Thomson, Henstock Kurzweil integtals on time scales, PanAmerican Math J. 18 (2008), no. 1, 1-19.

Cited by

  1. THE Mα-DELTA INTEGRAL ON TIME SCALES vol.27, pp.4, 2014, https://doi.org/10.14403/jcms.2014.27.4.661
  2. THE RIEMANN DELTA INTEGRAL ON TIME SCALES vol.27, pp.2, 2014, https://doi.org/10.14403/jcms.2014.27.2.327
  3. THE LEBESGUE DELTA INTEGRAL vol.27, pp.3, 2014, https://doi.org/10.14403/jcms.2014.27.3.489