References
- R. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math. 35 (1999), 3-22 https://doi.org/10.1007/BF03322019
- S. Avsec, B. Bannish, B. Johnson, and S. Meckler, The Henstock-Kurzweil delta integral on unbounded time scales, PanAmerican Math. J. 16 (2006), no. 3, 77-98.
- G. Sh. Guseinov, Intergration on time scales, J. Math. Anal. Appl. 285 (2003), 107-127. https://doi.org/10.1016/S0022-247X(03)00361-5
- G. Sh. Guseinov and B. Kaymakcalan, Basics of Riemann delta and nabla integration on time scales, J. Difference Equations Appl. 8 (2002), 1001-1027. https://doi.org/10.1080/10236190290015272
- J. M. Park, D. H. Lee, J. H. Yoon, and J. T. Lim, The Henstock and Henstock delta Integrals, J. Chungcheng Math. Soc. 26 (2013), no. 2, 291-298.
- J. M. Park, D. H. Lee, J. H. Yoon, Y. K. Kim, and J. T. Lim, The relation between Henstock integral and Henstock delta Integral on time scales, J. Chungcheng Math. Soc. 26 (2013), no. 3, 625-630. https://doi.org/10.14403/jcms.2013.26.3.625
- A. Perterson and B. Thompson, Henstock-Kurzweil Delta and Nabla Integral, J. Math. Anal. Appl. 323 (2006), 162-178. https://doi.org/10.1016/j.jmaa.2005.10.025
- C. W. Swartz and D. S. Kurtz, Theories of Integration: The Integrals of Riemann Lebesgue, Henstock-Kurzweil, and Mcshane, World Scientific, 2004.
- B. S. Thomson, Henstock Kurzweil integtals on time scales, PanAmerican Math J. 18 (2008), no. 1, 1-19.
Cited by
- THE Mα-DELTA INTEGRAL ON TIME SCALES vol.27, pp.4, 2014, https://doi.org/10.14403/jcms.2014.27.4.661
- THE RIEMANN DELTA INTEGRAL ON TIME SCALES vol.27, pp.2, 2014, https://doi.org/10.14403/jcms.2014.27.2.327
- THE LEBESGUE DELTA INTEGRAL vol.27, pp.3, 2014, https://doi.org/10.14403/jcms.2014.27.3.489