References
- B. Boukhalene, E. Elqorachi, and Th. M. Rassias, On the generalized Hyers-Ulam stability of the quadratic functional equation with a general involution, Nonlinear Funct. Anal. Appl. 12 (2007), no. 2, 247-262.
- B. Boukhalene, E. Elqorachi, and Th. M. Rassias, On the Hyers-Ulam stability of approximately pexider mappings, Math. Ineqal. Appl. 11 (2008), 805-818.
- S. Czerwik, Functional equations and Inequalities in several variables, World Scientific, New Jersey, London, 2002.
- J. B. Diaz, Beatriz Margolis A fixed point theorem of the alternative, for contractions on a generalized complete metric space Bull. Amer. Math. Soc. 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
- G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143-190. https://doi.org/10.1007/BF01831117
- D. H. Hyers, On the stability of linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D. H. Hyers, G. Isac, and T. M. Rassias, Stability of functional equations in several variables, Birkhauser, Boston, 1998.
- D. H. Hyers and T. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153. https://doi.org/10.1007/BF01830975
- S. M. Jung and Z. H. Lee, A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory Appl. 2008.
- S. M. Jung, On the Hyers-Ulam stability of the functional equation that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137. https://doi.org/10.1006/jmaa.1998.5916
-
F. Skof, Approssimazione di funzioni
${\delta}$ -quadratic su dominio restretto, Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 118 (1984), 58-70. - H. Stetkaer, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), 144-172. https://doi.org/10.1007/BF02755452
- S. M. Ulam, A collection of mathematical problems, Interscience Publ., New York, 1960.
Cited by
- APPROXIMATE QUADRATIC MAPPINGS IN QUASI-β-NORMED SPACES vol.28, pp.2, 2015, https://doi.org/10.14403/jcms.2015.28.2.311