DOI QR코드

DOI QR Code

RELATIONSHIP BETWEEN THE WIENER INTEGRAL AND THE ANALYTIC FEYNMAN INTEGRAL OF CYLINDER FUNCTION

  • Kim, Byoung Soo (School of Liberal Arts Seoul National University of Science and Technology)
  • Received : 2014.02.04
  • Accepted : 2014.04.07
  • Published : 2014.05.15

Abstract

Cameron and Storvick discovered a change of scale formula for Wiener integral of functionals in a Banach algebra $\mathcal{S}$ on classical Wiener space. We express the analytic Feynman integral of cylinder function as a limit of Wiener integrals. Moreover we obtain the same change of scale formula as Cameron and Storvick's result for Wiener integral of cylinder function. Our result cover a restricted version of the change of scale formula by Kim.

Keywords

References

  1. R. H. Cameron, The translation pathology of Wiener space, Duke Math. J. 21 (1954), 623-628. https://doi.org/10.1215/S0012-7094-54-02165-1
  2. R. H. Cameron and W. T. Martin, The behavior of measure and measurability under change of scale in Wiener space, Bull. Amer. Math. Soc. 53 (1947), 130-137. https://doi.org/10.1090/S0002-9904-1947-08762-0
  3. R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, in Analytic Functions (Kozubnik, 1979), Lecture Notes in Math. 798, Springer-Verlag, (1980), 18-67. https://doi.org/10.1007/BFb0097256
  4. R. H. Cameron and D. A. Storvick, Change of scale formulas for Wiener integral, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II-Numero 17 (1987), 105-115.
  5. R. H. Cameron and D. A. Storvick, Relationships between the Wiener integral and the analytic Feynman integral, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II-Numero 17 (1987), 117-133.
  6. T. Huffman, C. Park, and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661-673. https://doi.org/10.1090/S0002-9947-1995-1242088-7
  7. G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), 157-176. https://doi.org/10.2140/pjm.1979.83.157
  8. Y. S. Kim, A change of scale formula for Wiener integrals of cylinder functions on abstract Wiener spaces, Internat. J. Math. Math. Sci. 21 (1998), 73-78. https://doi.org/10.1155/S0161171298000088
  9. I. Yoo, B. J. Kim, and B. S. Kim, A change of scale formula for a function space integrals on $C_{a,b}$[0, T], Proc. Amer. Math. Soc. 141 (2013), 2729-2739. https://doi.org/10.1090/S0002-9939-2013-11598-4
  10. I. Yoo and D. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces, Internat. J. Math. Math. Sci. 17 (1994), 239-248. https://doi.org/10.1155/S0161171294000359
  11. I. Yoo and D. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces II, J. Korean Math. Soc. 31 (1994), 115-129.
  12. I. Yoo, T. S. Song, and B. S. Kim, A change of scale formula for Wiener integrals of unbounded functions II, Commun. Korean Math. Soc. 21 (2006), 117-133. https://doi.org/10.4134/CKMS.2006.21.1.117
  13. I. Yoo, T. S. Song, B. S. Kim, and K. S. Chang, A change of scale formula for Wiener integrals of unbounded functions, Rocky Mountain J. Math. 34 (2004), 371-389. https://doi.org/10.1216/rmjm/1181069911

Cited by

  1. SCALE TRANSFORMATIONS FOR PRESENT POSITION-INDEPENDENT CONDITIONAL EXPECTATIONS vol.53, pp.3, 2016, https://doi.org/10.4134/JKMS.j150285
  2. Integral Transforms on a Function Space with Change of Scales Using Multivariate Normal Distributions vol.2016, 2016, https://doi.org/10.1155/2016/9235960