Abstract
In this study, the concentration of odorants released from albumin (EA) and yolk (EY) portions of boiled egg samples were determined as a function of storage time. The concentrations were measured at storage days of 0, 1, 3, 6, and 9 under room temperature. As such, odorants produced during both fresh and decay conditions were measured through time. A total of 19 compounds were selected as the main target odorants along with 12 reference compounds. GC-MS (for VOC) and GC-PFPD system (for sulfur gases) equipped with thermal desorption (TD) system were employed for odorant analysis in this work. The initial concentrations measured from the chamber system were converted into flux terms ($ng{\cdot}g^{-1}{\cdot}min^{-1}$). The EA showed the highest concentration of $H_2S$ (234 $ng{\cdot}g^{-1}{\cdot}min^{-1}$) at EA-0, and the concentrations of AT (Acetone) was also seen clearly in the range of 11.7 (EA-0) to 58.6 $ng{\cdot}g^{-1}{\cdot}min^{-1}$ (EA-9). The EY showed similar patterns. EtAl (Ethyl alcohol) increased 9.47 (EA-1) to 96.7 $ng{\cdot}g^{-1}{\cdot}min^{-1}$ (EA-9) in EA samples. Ketone, alcohol, sulfur groups generally exhibited high concentrations compared to other odorants. These data were also compared in relation to olfactometry related dilution-to-threshold (D/T) ratio by air dilution sensory (ADS) test and sum of odor intensity (SOI).