References
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Design, 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
- Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B: Eng., 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
- Benatta, M.A., Mechab, I., Tounsi, A. and Adda bedia, E.A. (2008), "Static analysis of functionally graded short beams including warping and shear deformation effects", Comput. Mater. Sci., 44(2), 765- 773. https://doi.org/10.1016/j.commatsci.2008.05.020
- Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50(3), 609-614. https://doi.org/10.1115/1.3167098
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
- Marur, P.R. (1999), "Fracture behaviour of functionally graded materials", Ph.D. Dissertation, Auburn University, Auburn, AL, USA.
- Sallai, B.O., Tounsi, A., Mechab, I., Bachir, B.M., Meradjah, M., Adda Bedia, E.A. (2009), "A theoretical analysis of flexional bending of Al/Al2O3 S-FGM thick beams", Comput. Mater. Sci., 44(4), 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001
- Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Tech., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
- Simsek, M. (2010a), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
- Simsek, M. (2010b), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030
- Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Vel, S.S. and Batra, R.C. (2002), "Exact solution for the cylindrical bending vibration of functionally graded plates", Proceedings of the American Society of Composites, Seventh Technical Conference, October, West Lafayette, Purdue University, IN, USA.
- Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004
Cited by
- Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
- Influence of the porosities on the free vibration of FGM beams vol.21, pp.3, 2015, https://doi.org/10.12989/was.2015.21.3.273
- Refined plate theory for bending analysis of a HSLA steel plate under 3D temperature field vol.250, 2015, https://doi.org/10.1016/j.amc.2014.10.122
- Static bending and free vibration of FGM beam using an exponential shear deformation theory vol.4, pp.1, 2015, https://doi.org/10.12989/csm.2015.4.1.099
- Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1287
- A new simple shear and normal deformations theory for functionally graded beams vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.409
- Analytical solution for bending analysis of functionally graded beam vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.829
- Analyse of the behavior of functionally graded beams based on neutral surface position vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.703
- A refined exponential shear deformation theory for free vibration of FGM beam with porosities vol.9, pp.3, 2015, https://doi.org/10.12989/gae.2015.9.3.361
- Beam finite element for modal analysis of FGM structures vol.121, 2016, https://doi.org/10.1016/j.engstruct.2016.04.042
- On thermal stability of plates with functionally graded coefficient of thermal expansion vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.313
- Analytical solution of nonlinear cylindrical bending for functionally graded plates vol.9, pp.5, 2015, https://doi.org/10.12989/gae.2015.9.5.631
- Buckling behaviours of functionally graded polymeric thin-walled hemispherical shells vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.849
- Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
- An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
- A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
- A computational shear displacement model for vibrational analysis of functionally graded beams with porosities vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.369
- Vibration analysis of a pre-stressed laminated composite curved beam vol.19, pp.3, 2015, https://doi.org/10.12989/scs.2015.19.3.635
- Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory vol.10, pp.5, 2016, https://doi.org/10.12989/eas.2016.10.5.1033
- Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
- Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
- The Enhanced Spline-Method for Numerical Results of Natural Frequencies of Beams vol.176, 2017, https://doi.org/10.1016/j.proeng.2017.02.343
- Nonlinear vibration analysis of piezoelectric functionally graded nanobeam exposed to combined hygro-magneto-electro-thermo-mechanical loading vol.5, pp.7, 2018, https://doi.org/10.1088/2053-1591/aad0ce
- Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections vol.24, pp.9, 2018, https://doi.org/10.1177/1077546316668932
- Hygrothermal analysis of laminated composites using C0 FE model based on higher order zigzag theory vol.23, pp.1, 2014, https://doi.org/10.12989/scs.2017.23.1.041
- A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2014, https://doi.org/10.12989/gae.2017.12.1.009
- Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams vol.6, pp.1, 2014, https://doi.org/10.12989/amr.2017.6.1.013
- A refined hyperbolic shear deformation theory for bending of functionally graded beams based on neutral surface position vol.63, pp.5, 2014, https://doi.org/10.12989/sem.2017.63.5.683
- An analytical solution for bending and vibration responses of functionally graded beams with porosities vol.25, pp.4, 2014, https://doi.org/10.12989/was.2017.25.4.329
- Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates vol.7, pp.2, 2014, https://doi.org/10.12989/amr.2018.7.2.119
- Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns vol.35, pp.2, 2014, https://doi.org/10.12989/scs.2020.35.2.295
- Dynamic responses of laminated beams under a moving load in thermal environment vol.35, pp.6, 2014, https://doi.org/10.12989/scs.2020.35.6.729
- Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers vol.36, pp.1, 2020, https://doi.org/10.12989/scs.2020.36.1.001
- Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study vol.26, pp.3, 2020, https://doi.org/10.12989/cac.2020.26.3.285
- Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation vol.9, pp.6, 2014, https://doi.org/10.12989/csm.2020.9.6.499