References
- Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.
- Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849.
- Geim AK. Graphene: status and prospects. Science, 324, 1530 (2009). http://dx.doi.org/10.1126/science.1158877.
- Chen H, Muller MB, Gilmore KJ, Wallace GG, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater, 20, 3557 (2008). http://dx.doi.org/10.1002/adma.200800757.
- Chen C, Yang QH, Yang Y, Lv W, Wen Y, Hou PX, Wang M, Cheng HM. Self-assembled free-standing graphite oxide membrane. Adv Mater, 21, 3007 (2009). http://dx.doi.org/10.1002/adma.200803726.
- Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol, 3, 538 (2009). http://dx.doi.org/10.1038/nnano.2008.210.
- Shen JF, Hu YZ, Li C, Qin C, Shi M, Ye MX. Layer-by-layer self-assembly of graphene nanoplatelets. Langmuir, 25, 6122 (2009). http://dx.doi.org/10.1021/la900126g.
- Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J. Ultralight and highly compressible graphene aerogels. Adv Mater, 25, 2219 (2013). http://dx.doi.org/10.1002/adma.201204530.
- Qian Y, Ismail IM, Stein A. Ultralight, high-surface-area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol. Carbon, 68, 221 (2014). http://dx.doi.org/10.1016/j.carbon.2013.10.082.
- Abad LV, Relleve LS, Aranilla CT, Dela Rosa AM. Properties of radiation synthesized PVP-kappa carrageenan hydrogel blends. Radiat Phys Chem, 68, 901 (2003). http://dx.doi.org/10.1016/S0969-806X(03)00164-6.
- Park M, Shin HK, Kim BS, Pant B, Barakat NAM, Kim HY. Facile preparation of graphene induced from electron-beam irradiated graphite. Mater Lett, 105, 236 (2013). http://dx.doi.org/10.1016/j.matlet.2013.04.027.
- Aluigi A, Vineis C, Varesano A, Mazzuchetti G, Ferrero F, Tonin C. Structure and properties of keratin/PEO blend nanofibres. Eur Polym J, 44, 2465 (2008). http://dx.doi.org/10.1016/j.eurpolymj.2008.06.004.
- Park M, Kim BS, Shin HK, Park SJ, Kim HY. Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation. Mater Sci Eng C, 33, 5051 (2013). http://dx.doi.org/10.1016/j.msec.2013.08.032.
- Hummers WS, Jr., Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017.
- Cardamone JM. Investigating the microstructure of keratin extracted from wool: peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR). J Mol Struct, 969, 97 (2010). http://dx.doi.org/10.1016/j.molstruc.2010.01.048.
- Li R, Liu C, Ma J. Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohydr Polym, 84, 631 (2011). http://dx.doi.org/10.1016/j.carbpol.2010.12.041.
- Zhang K, Zhang LL, Zhao XS, Wu J. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater, 22, 1392 (2010). http://dx.doi.org/10.1021/cm902876u.
- Hu J, Chen G, Lo IM. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res, 39, 4528 (2005). http://dx.doi.org/10.1016/j.watres.2005.05.051.
Cited by
- Effects of Graphene Oxide on the Structure and Properties of Regenerated Wool Keratin Films vol.10, pp.12, 2018, https://doi.org/10.3390/polym10121318