DOI QR코드

DOI QR Code

Review of Subaqueous Tunneling Case Histories

국내외 해․하저터널 건설 사례 분석

  • 최승범 (서울대학교 공과대학 에너지시스템공학부) ;
  • 이수득 (서울대학교 공과대학 에너지시스템공학부) ;
  • 김현우 (한국지질자원연구원 지구환경연구본부) ;
  • 전석원 (서울대학교 공과대학 에너지시스템공학부)
  • Received : 2014.03.28
  • Accepted : 2014.04.22
  • Published : 2014.04.30

Abstract

Recently, a few mega projects of subsea tunneling are completed or ongoing or under planning stage all across the world. In Korea, subsea tunnels connecting to Japan and China have been considered in the past decades. At the same time, subsea tunnels connecting to domestic islands were planned with preliminary design concepts. Development and improvement of indigenous techniques regarding subsea tunneling are essential in light of current technical level in Korea and their future impact on tunneling industry. In this paper, distinct features of subsea tunnel and construction trend of subaqueous tunnels are analyzed via case studies. Also, case studies about incidents related to subsea tunneling and required techniques to secure safety are presented.

최근 전 세계적으로 여러 건의 대규모 해저터널 건설 사업이 완료되었거나 진행 혹은 계획 중에 있다. 우리나라 역시 한중, 한일 해저터널에 대한 기본 구상이 이루어지고 있으며 동시에 국내 도서 지역을 연결하는 해저터널이 구상 단계에 있다. 국내 기술수준과 해저터널 건설이 갖는 파급효과를 고려할 때, 해저터널 관련 기술의 확보 및 개선이 요구되어진다. 이 논문은 사례연구를 통하여 해저터널이 갖는 특징과 국내외 해 하저터널 건설동향을 분석하였고 해저터널과 관련된 사고 발생 사례를 수집하여 이로부터 요구되는 관련기술에 대하여 정리하였다.

Keywords

References

  1. Shin, H., and D. Kim, 2012, Present Construction State of Long Undersea Tunnels and Facing Technical Issues. Review of Architecture and Building Science. 56(2): p. 81-83.
  2. Palmstrom, A., 1994, The challenge of subsea tunnelling. Tunnelling and Underground Space Technology, 9(2): p. 145-150. https://doi.org/10.1016/0886-7798(94)90025-6
  3. Park, W., S. Han, M. Oh, T. Han and J. Ko, 2012, Technical Trend on Submerged Floating Tunnel. Journal of the Korean Society of Civil Engineers. 60(8): p. 23-29.
  4. Hashimoto, K. and Y. Tanabe, 1986, Construction of the Seikan undersea tunnel-II. execution of the most difficult sections. Tunnelling and Underground Space Technology, 1(3): p. 373-379. https://doi.org/10.1016/0886-7798(86)90020-9
  5. Ikuma, M., 2005, Maintenance of the undersea section of the Seikan Tunnel. Tunnelling and Underground Space Technology. 20(2): p. 143-149. https://doi.org/10.1016/j.tust.2003.10.001
  6. Backer, L. and O.T. Blindheim, 1999, The Oslofjord subsea road tunnel. Crossing of a weakness zone under high water pressure by freezing, Challenges for the 21st Century: Proceedings of the World Tunnel Congress '99, pp. 309-316.
  7. Nilsen, B., 2011, Cases of instability caused by weakness zones in Norwegian tunnels. Bulletin of Engineering Geology and the Environment. 70(1): p. 7-13. https://doi.org/10.1007/s10064-010-0331-x
  8. Dahlo, T. and B. Nilsen, 1994, Stability and rock cover of hard rock subsea tunnels. Tunnelling and Underground Space Technology, 9(2): p. 151-158. https://doi.org/10.1016/0886-7798(94)90026-4
  9. Biggart, A. and R. Sternath, 1996, Storebaelt eastern railway tunnel : Construction. in Proceedings of the ICE-Civil Engineering.: Thomas Telford.
  10. Bejui, H. and T. Avril, 1986, French experience in the field of submarine tunnelling. Tunnelling and Underground Space Technology. 1(3): p. 251-260. https://doi.org/10.1016/0886-7798(86)90006-4
  11. Kim, H., S. Jeon, and E.-S. Park, 2012. Evaluation of monitoring items for adverse ground conditions in subsea tunneling. Tunnelling and Underground Space Technology. 32: p. 19-33. https://doi.org/10.1016/j.tust.2012.05.001
  12. Park, E., H. Shin, Y. Shin, and T. Kim, 2009. Management of Risk Scenarios based on Ground Conditions under Construction of a Subsea Tunnel. TUNNEL AND UNDERGROUND SPACE, 19(4): p. 275-286.
  13. Hong, S., Y. Kim, H. Kim, G. Bae, 2010, A Fundamental Study of Artificial Ground Freezing. : Proceedings of Korean Geo-Environmental Society Fall conference, p. 417-421.