DOI QR코드

DOI QR Code

Secondary Metabolite Profiling in Various Parts of Tomato Plants

  • Kim, Dong Sub (Department of Plant Science, Seoul National University) ;
  • Na, Haeyoung (Department of Horticultural Science, Mokpo National University) ;
  • Kwack, Yurina (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Chun, Changhoo (Department of Plant Science, Seoul National University)
  • Received : 2013.10.22
  • Accepted : 2013.11.27
  • Published : 2014.04.30

Abstract

Contents of carotenoids, phenolic compounds, volatile organic compounds, and alkaloids in leaves, internodes, fruits, and roots of tomatoes in different developmental stages were measured. Lycopene, ${\beta}$-carotene, and lutein were detected in all the tested parts except roots and green fruits. Lycopene content in red fruits was $49.04{\mu}g{\cdot}g^{-1}$ FW, while that in the other parts was below $40{\mu}g{\cdot}g^{-1}$ FW. ${\beta}$-Carotene and lutein contents in 24th leaves were 5.81 and $6.40{\mu}g{\cdot}g^{-1}$ FW, respectively, and were greater than those in the other parts. Caffeic, chlorogenic, and vanillic acids were detected in all the tested parts except roots. The content of chlorogenic acid in the 18th leaves was $40.11{\mu}g{\cdot}g^{-1}$ FW, while that in the other parts was lower than $31.00{\mu}g{\cdot}g^{-1}$ FW. The contents of caffeic and vanillic acids in the 24th leaves were 9.18 and $1.64{\mu}g{\cdot}g^{-1}$ FW, respectively, and were greater than those in the other parts. Moreover, younger leaves contained the more diverse volatile organic compounds including monoterpenes and sesquiterpenes. Contents of dehydro-tomatine and ${\alpha}$-tomatine were greatest in leaves, followed by internodes, roots and fruits. Younger leaves and internodes contained more dehydro-tomatine and ${\alpha}$-tomatine than older leaves and internodes. The contents of dehydro-tomatine and ${\alpha}$-tomatine in the 24th leaves were 0.89 and $1.42mg{\cdot}g^{-1}$ FW, respectively, and were greatest among all the tested parts. Our results indicated that, except lycopene, tomato leaves included greater secondary metabolites contents than red fruits. The results suggest that inedible parts of tomato plants can be used as raw material for antioxidants, anti-inflammatory agents, fungistats, and pesticides.

Keywords

References

  1. Aerts, R.J., T.N. Barry, and W.C. McNabb. 1999. Polyphenols and agriculture: Beneficial effects of proanthocyanidins in forages. Agr. Ecosyst. Environ. 75:1-12. https://doi.org/10.1016/S0167-8809(99)00062-6
  2. Akazawa, T. and K. Wada. 1961. Analytical study of ipomeamarone & chlorogenic acid alterations in sweet potato roots infected by Ceratocystis fimbriata. Plant Physiol. 36:139-144. https://doi.org/10.1104/pp.36.2.139
  3. Andersson, B.A., R.T. Holman, L. Lundgren, and G. Stenhagen. 1980. Capillary gas chromatograms of leaf volatiles. A possible aid to breeders for pest and disease resistance. J. Agric. Food Chem. 28:985-989. https://doi.org/10.1021/jf60231a018
  4. Astorg, P., S. Gradelet, R. Berges, and M. Suschetet. 1997. Dietary lycopene decreases the initiation of liver preneoplastic foci by diethylnitrosamine in the rat. Nutr. Cancer 29:60-68. https://doi.org/10.1080/01635589709514603
  5. Bagchi, D., M. Bagchi, S.J. Stohs, D.K. Das, S.D. Ray, C.A. Kuszynski, S.S. Joshi, and H.G. Pruess. 2000. Free radicals and grape seed proanthocyanidin extract: Importance in human healthand disease prevention. Toxicology 148:187-197. https://doi.org/10.1016/S0300-483X(00)00210-9
  6. Boulogne, I., P. Petit, H. Ozier-Lafontaine, L. Desfontaines, and G. Loranger-Merciris. 2012. Insecticidal and antifungal chemicals produced by plants: a review. Environ. Chem. Lett. 10:325-347. https://doi.org/10.1007/s10311-012-0359-1
  7. Brown, P.D., J.G. Tokuhisa, M. Reichelt, and J. Gershenzon. 2003. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471-481. https://doi.org/10.1016/S0031-9422(02)00549-6
  8. Buttery, R.G., L.C. Ling, and D.M. Light. 1987. Tomato leaf volatile aroma components. J. Agric. Food Chem. 35:1039-1042. https://doi.org/10.1021/jf00078a043
  9. Chen, H., A.D. Jones, and G.A. Howe. 2006. Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Lett. 580:2540-2546. https://doi.org/10.1016/j.febslet.2006.03.070
  10. Clack, R.S., J. Kuc, R.E. Henze, and F.W. Quackenbush. 1959. The nature and fungitoxicity of an amino acid addition product of chlorogenic acid. Phytopathology 49:594-597.
  11. D'Haeze, W. and M. Holsters. 2002. Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12:79-105. https://doi.org/10.1093/glycob/12.6.79R
  12. Deavours, B.E. and R.A. Dixon. 2005. Metabolic engineering of isoflavonoid biosynthesis in Alfalfa. Plant Physiol. 138:2245-2259. https://doi.org/10.1104/pp.105.062539
  13. Degenhardt, J., J. Gershenzon, I.T. Baldwin, and A. Kessler. 2003. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr. Opin. Biotech. 14:169-176. https://doi.org/10.1016/S0958-1669(03)00025-9
  14. Di Mascio, P., M.E. Murphy, and H. Sies. 1991. Antioxidant defense systems: The role of carotenoids, tocopherols, and thiols. Amer. J. Clin. Nutr. 53:194-200.
  15. Dixon, R.A. 2001. Natural products and plant disease resistance. Nature 411:843-847. https://doi.org/10.1038/35081178
  16. Elliger, C.A., Y. Wong, B.G. Chan, and A.C. Waiss, Jr. 1981. Growth inhibitors in tomato (Lycopersicon) to tomato fruitworm (Heliothis zea). J. Chem. Ecol. 7:753-758. https://doi.org/10.1007/BF00990307
  17. Farah, A. and C.M. Donangelo. 2006. Phenolic compounds in coffee. Braz. J. Plant Physiol. 18:23-36.
  18. Fontaine, T.D., G.W. Irving, R. Ma, J.B. Poole, and S.P. Doolittle. 1948. Isolation and partial characterization of crystalline tomatine, an antibiotic agent from the tomato plant. Arch. Biochem. 18:467-475.
  19. Fraser, P.D., M.R. Truesdale, C.R. Bird, W. Schuch, and P.M. Bramley. 1994. Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol. 105:405-413.
  20. French, C.J. and G.H. Neil Towers. 1992. Inhibition of infectivity of potato virus X by flavonoids. Phytochemistry 31:3017-3020. https://doi.org/10.1016/0031-9422(92)83438-5
  21. Friedman, M. and C.E. Levin. 1998. Dehydrotomatine content in tomatoes. J. Agric. Food Chem. 46:4571-4576. https://doi.org/10.1021/jf9804589
  22. Frydman, A., O. Weisshaus, M. Bar-Peled, D.V. Huhman, L.W. Sumner, F.R. Marin, E. Lewinsohn, R. Fluhr, J. Gressel, and Y. Eyal. 2004. Citrus fruit bitter flavors: Isolation and functional characterization of the gene Cm1,2 RhaT encoding a 1, 2 rhamnosyl transferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J. 40:88-100. https://doi.org/10.1111/j.1365-313X.2004.02193.x
  23. Fuhrman, B., A. Elis, and M. Aviram. 1997. Hypocholesterolemic effect of lycopene and $\beta$-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophages. Biochem. Bioph. Res. Commun. 233:658-662. https://doi.org/10.1006/bbrc.1997.6520
  24. Gibson, R.W. 1971. Glandular hairs providing resistance to aphids in certain wild potato species. Ann. Appl. Biol. 68:113-119. https://doi.org/10.1111/j.1744-7348.1971.tb06448.x
  25. Gidley, M. 2004. Naturally functional foods - Challenges and opportunities. Asia Pac. J. Clin. Nutr. 13:S31.
  26. Harrison, H.F., J.K. Peterson, M.E. Snook, J.R. Bohac, and D.M. Jackson. 2003. Quantity and potential biological activity of caffeic acid in sweet potato (Ipomoea batatas (L.) Lam.) storage root periderm. J. Agric. Food Chem. 51:2943-2948. https://doi.org/10.1021/jf0211229
  27. Isleten, M. and Y. Karagul-Yuceer. 2008. Effects of functional dairy based proteins on nonfat yogurt quality. J. Food Quality 31:265-280. https://doi.org/10.1111/j.1745-4557.2008.00199.x
  28. Jimenez-Escrig, A., I. Jimenez-Jimenez, C. Sanchez-Moreno, and F. Saura-Calixto. 2000. Evaluation of free radical scavenging of dietary carotenoids by the stable radical 2,2-diphenyl-1-picryl-hydrazyl. J. Sci. Food Agric. 80:1686-1690. https://doi.org/10.1002/1097-0010(20000901)80:11<1686::AID-JSFA694>3.0.CO;2-Y
  29. Johnson, G. and L.A. Schaal. 1957. Chlorogenic acid and other orthodihydricphenolsin scab-resistant Russet Burbank and scabsusceptible Triumph potato tubers of different maturities. Phytopathology 47:253-255.
  30. Kahkonen, M.P., A.I. Hopia, H.J. Vuorela, J.P. Rauha, K. Pihlaja, T.S. Kujala, and M. Heinonen. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47:3954-3962. https://doi.org/10.1021/jf990146l
  31. Kim, D.S., H. Na, J.H. Song, Y. Kwack, S.K. Kim, and C. Chun. 2012. Antimicrobial activity of thinned strawberry fruits at different maturation stages. Kor. J. Hort. Sci. Technol. 30:769-775. https://doi.org/10.7235/hort.2012.12199
  32. Kim, D.S., H. Na, Y. Kwack, S.K. Kim, J.W. Heo, and C. Chun. 2013. Composition of secondary metabolites in various parts of 'Seolhyang' strawberry plants. Kor. J. Hort. Sci. Technol. 31:224-230.
  33. Kozukue, N. and M. Friedman. 2003. Tomatine, chlorophyll, $\beta$‐carotene and lycopene content in tomatoes during growth and maturation. J. Sci. Food Agric. 83:195-200. https://doi.org/10.1002/jsfa.1292
  34. Lenucci, M.S., D. Cadinu, M. Taurino, G. Piro, and G. Dalessandro. 2006. Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem. 54:2606-2613. https://doi.org/10.1021/jf052920c
  35. Manach, C., A. Scalbert, C. Morand, C. Remesy, and L. Jimenez. 2004. Polyphenols: Food sources and bioavailability. Amer. J. Clin. Nutr. 79:727-747.
  36. Merz-Demlow, B.E., A.M. Duncan, K.E. Wangen, X. Xu, T.P. Carr, W.R. Phipps, and M.S. Kurzer. 2000. Soy isoflavones improve plasma lipids in normocholesterolemic, premenopausal women. Amer. J Clin. Nutr. 71:1462-1469.
  37. Moco, S., E. Capanoglu, Y. Tikunov, R.J. Bino, D. Boyacioglu, R.D. Hall, J. Vernoort, and R.C.H. De vos. 2007. Tissue specialization at the metabolite level is perceivedduring the development of tomato fruit. J. Exp. Bot. 58:4131-4146. https://doi.org/10.1093/jxb/erm271
  38. Morrissey, J.P. and A.E. Osbourn. 1999. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. Biol. Rev. 63:708-724.
  39. Nuutila, A.M., K. Kammiovirta, and K.M. Oksman-Caldentey. 2002. Comparison of methods for the hydrolysis of flavonoidsand phenolic acids from onion and spinach for HPLC analysis. Food Chem. 76:519-525. https://doi.org/10.1016/S0308-8146(01)00305-3
  40. Oldroyd, G.E.D. 2001. Dissecting symbiosis: Developments in Nod factor signal transduction. Ann. Bot. 87:709-718. https://doi.org/10.1006/anbo.2001.1410
  41. Pichersky, E. and D.R. Gang. 2000. Genetics and biochemistry of secondary metabolites in plants: An evolutionary perspective. Trends Plant Sci. 5:439-445. https://doi.org/10.1016/S1360-1385(00)01741-6
  42. Rao, A.V. and S. Agarwal. 1999. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutr. Res. 19:305-323. https://doi.org/10.1016/S0271-5317(98)00193-6
  43. Rauha, J.P., S. Remes, M. Heinonen, A. Hopia, M. Kahkonen, T. Kujala, K. Pihlaja, H. Vuorela, and P. Vuorela. 2000. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Intl. J. Food Microbial. 56:3-12. https://doi.org/10.1016/S0168-1605(00)00218-X
  44. Relic, B., X. Perret, M. Estrada-Garcia, J. Kopcinska, W. Golinowski, H.B. Krishnan, S.G. Pueppke, and W.J. Broughton. 1994. Nod factors of Rhizobium are a key to the legume door. Mol. Microbiol. 13:171-178. https://doi.org/10.1111/j.1365-2958.1994.tb00412.x
  45. Rohloff, J. and A.M. Bones. 2005. Volatile profiling of Arabidopsis thaliana - putative olfactory compounds in plant communication. Phytochemistry 66:1941-1955. https://doi.org/10.1016/j.phytochem.2005.06.021
  46. Ronen, G., M. Cohen, D. Zamir, and J. Hirschberg. 1999. Regulation of carotenoid biosynthesis during tomato fruit development:Expression of the gene for lycopene epsilon-cyclase is downregulated during ripening and is elevated in the mutant Delta. Plant J. 17:341-351. https://doi.org/10.1046/j.1365-313X.1999.00381.x
  47. Sadler, G., J. Davis, and D. Dezman. 1990. Rapid extraction of lycopene and $\beta$‐carotene from reconstituted tomato paste and pink grapefruit homogenates. J. Food Sci. 55:1460-1461. https://doi.org/10.1111/j.1365-2621.1990.tb03958.x
  48. Sandrock, R.W. and H.D. Van Etten. 1998. Fungal sensitivity to andenzymatic degradation of the phytoanticipin $\alpha$-tomatine. Phytopathology 88:137-143. https://doi.org/10.1094/PHYTO.1998.88.2.137
  49. van Schie, C.C.N., M.A. van Haring, and R.C. Schuurink. 2007. Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol. Biol. 64:251-263. https://doi.org/10.1007/s11103-007-9149-8
  50. Setchell, K.D.R. and A. Cassidy. 1999. Dietary isoflavones: Biological effects and relevance to human health. J. Nutr. 129:758-767.
  51. Slimestad, R. and M. Verheul. 2009. Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J. Sci. Food Agric. 89:1255-1270. https://doi.org/10.1002/jsfa.3605
  52. Stamp, N.E. and Y. Yang. 1996. Response of insect herbivores to multiple allelochemicals under different thermal regimes. Ecology 77:1088-1102. https://doi.org/10.2307/2265578
  53. Todd, G.W., A. Getahun, and D.E. Cress. 1971. Resistance in barley to the greenbug, Schizaphis graminum. 1. Toxicity of phenolic and related compounds and related substances. Ann. Entomol. Soc. Amer. 64:718-722. https://doi.org/10.1093/aesa/64.3.718
  54. Urbasch, I. 1981. Antimycotic activity, volatile metabolites from the leaves of tomato plants. Naturwissenschaften 68:204-205. https://doi.org/10.1007/BF01047204
  55. Uritani, I. and T. Akazawa. 1955. Antibiotic effect on Ceratostomella fimbriata of ipomeamarone, an abnormal metabolite in black rot of sweetpotato. Science 121:216-217. https://doi.org/10.1126/science.121.3137.216
  56. Verdonk, J.C., C.H. Ric de Vos, H.A. Verhoeven, M.A. Haring, A.J. van Tunen, and R.C. Schuurink. 2003. Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 62:997-1008. https://doi.org/10.1016/S0031-9422(02)00707-0
  57. Verpoorte, R. and J. Memelink. 2002. Engineering secondary metabolite production in plants. Curr. Opin. Biotech. 13:181-187. https://doi.org/10.1016/S0958-1669(02)00308-7
  58. Walker, J.R.L. 1962. Phenolic acids in 'cloud' and normal tomato fruit wall tissue. J. Sci. Food Agric. 13:363-367. https://doi.org/10.1002/jsfa.2740130703
  59. Wardale, D.A. 1973. Effect of phenolic compounds in Lycopersicon esculentum on the synthesis of ethylene. Phytochemistry 12:1523-1530. https://doi.org/10.1016/0031-9422(73)80361-9
  60. Widmer, T.L. and N. Laurent. 2006. Plant extracts containing caffeic acid and rosmarinic acid inhibit zoospore germination of Phytophthora spp. pathogenic to Theobroma cacao. Eur. J. Plant Pathol.115:377-388. https://doi.org/10.1007/s10658-006-9024-5
  61. Zhang, L.X., R.V. Cooney, and J.S. Bertram. 1991. Carotenoids enhance gap junctional communication and inhibitlipid peroxidation in C3H/10T1/2 cells: Relationship to their cancer chemopreventive action. Carcinogenesis 12:2109-2114. https://doi.org/10.1093/carcin/12.11.2109

Cited by

  1. Genotypic variation in carotenoid, ascorbic acid, total phenolic, and flavonoid contents, and antioxidant activity in selected tomato breeding lines vol.57, pp.5, 2016, https://doi.org/10.1007/s13580-016-0144-3
  2. Antimicrobial Activity of Various Parts of Tomato Plants Varied with Different Solvent Extracts vol.35, pp.2, 2014, https://doi.org/10.5423/ppj.oa.07.2018.0132
  3. Tomato’s Green Gold: Bioeconomy Potential of Residual Tomato Leaf Biomass as a Novel Source for the Secondary Metabolite Rutin vol.4, pp.21, 2019, https://doi.org/10.1021/acsomega.9b01462
  4. Controlling Alternaria cerealis MT808477 Tomato Phytopathogen by Trichoderma harzianum and Tracking the Plant Physiological Changes vol.10, pp.9, 2014, https://doi.org/10.3390/plants10091846