DOI QR코드

DOI QR Code

Occurrence of Meloidogyne incognita Infecting Resistant Cultivars and Development of an Efficient Screening Method for Resistant Tomato to the Mi-virulent Nematode

뿌리혹선충 저항성 토마토를 감염하는 Meloidogyne incognita의 발생 및 이 선충을 이용한 효율적인 저항성 검정법 확립

  • Hwang, Sung Min (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Park, Myung Soo (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Cheol (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung Soo (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong Ho (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Choi, Gyung Ja (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology)
  • 황성민 (한국화학연구원 바이오화학연구센터) ;
  • 박명수 (한국화학연구원 바이오화학연구센터) ;
  • 김진철 (한국화학연구원 바이오화학연구센터) ;
  • 장경수 (한국화학연구원 바이오화학연구센터) ;
  • 최용호 (한국화학연구원 바이오화학연구센터) ;
  • 최경자 (한국화학연구원 바이오화학연구센터)
  • Received : 2013.08.21
  • Accepted : 2013.11.19
  • Published : 2014.04.30

Abstract

Root-knot symptoms were found on a commercial tomato cultivar carrying Mi, a resistance gene to root-knot nematodes including Meloidogyne incognita, M. arenaria, and M. javanica in 2012 at Buyeo, Chungnam Province in Korea. The isolate was identified as M. incognita based on molecular analyses using two species-specific primer sets. Pathogenicity of the isolate on one susceptible and three resistant tomato cultivars to the root-knot nematodes was tested. The nematode isolate showed strong pathogenicity on all the tested cultivars at all tested incubation temperatures. In addition, resistance degree of 33 commercial tomato cultivars, 8 susceptible and 25 resistant cultivars to root-knot nematodes, was also tested. Plants were determined as resistant when they suppressed the nematode reproduction. All the cultivars demonstrated strong susceptibility to the nematode regardless of resistance of the tomato cultivars. To our knowledge, this is the first report on the occurrence of Mi infecting M. incognita isolate in Korea. On the other hand, to construct an efficient screening method for selecting resistant breeding source to the nematode isolate, root-knot development of M. incognita on four tomato cultivars according to several conditions such as inoculum concentration, plant growth stage, and incubation period after transplant was investigated. Reproduction of the nematode on all the tested cultivars according to inoculum concentration increased in a dose-dependent manner. Except for inoculum concentration, there was no significant difference in reproduction level of the cultivars according to the other tested conditions. On the basis of the results, we suggest an efficient screening method for new resistant tomato to the nematode isolate.

2012년 충남 부여에서 뿌리혹선충(Meloidogyne incognita, M. arenaria 및 M. javanica)에 대한 저항성 유전자 Mi를 가지고 있는 토마토 '유니콘' 품종에서 뿌리혹선충병이 크게 발생하였다. 이로부터 분리한 뿌리혹선충은 종 특이적 프라이머 2개에 의한 분석한 결과, M. incognita로 동정되었다. 이 선충에 의한 감수성 1개와 저항성 3개 토마토 품종의 뿌리혹선충병 발생을 조사하였는데, 실험한 모든 온도 조건에서 실험한 품종 모두는 높은 감수성을 보였다. 그리고 시판 중인 토마토 33개 품종(뿌리혹선충 저항성 25개와 감수성 8개)의 이 선충에 대한 저항성 정도를 조사한 결과, 실험한 모든 품종들은 각 품종의 뿌리혹선충 저항성과 관계없이 유사한 정도의 높은 감수성을 나타냈다. 본 논문은 우리나라에서 Mi 저항성 토마토 품종에 뿌리혹선충병을 일으키는 M. incognita 발생을 처음으로 보고하는 것이다. 한편, 새로운 저항성 육종 소재를 찾기 위한 효율적인 저항성 검정 방법을 확립하기 위하여, 이 선충의 접종 농도, 토마토 생육 시기 및 이식 시기 등의 다양한 발병 조건에 따른 토마토 4개 품종의 뿌리혹선충병 발생을 조사하였다. 접종원의 접종 농도가 증가할수록 토마토의 뿌리혹선충병 발생은 농도 의존적으로 증가하였다. 하지만 토마토의 생육 시기 및 이식 시기에 따른 토마토의 뿌리혹선충병 발생은 유의성 있는 차이가 없었다. 이들 결과들을 바탕으로 Mi-virulent M. incognita에 대한 토마토의 저항성 정도를 검정하기 위한 효율적인 방법을 제안하는 바이다.

Keywords

References

  1. Bailey, D.M. 1941. The seedling test method for root-knotnematode resistance. Proc. Am. Soc. Hortic. Sci. 38:573-575.
  2. Barker, K.R., D.P. Schmitt, and J.L. Imbriani. 1985. Nematode population dynamics with emphasis on determining damage potential to crops, p. 135-148. In: K.R. Barker, C.C. Carter, and J.N. Sasser (eds.). An advanced treatise on Meloidogyne, Vol. II. North Carolina State University, Raleigh, North Carolina, USA.
  3. Barham, W.S. and N.N. Winstead. 1957. Inheritance of resistance to root-knot nematodes in tomatoes. Proc. Am. Soc. Hortic. Sci. 69:372-377.
  4. Berthou, F., A. Badiallo, L. Demaeyer, G. Deguiran, N. Bruguier, and M. Dieng. 1989. Characterization of virulent (Mi-gene resistance breaking) biotypes of root-knot nematodes Meloidogyne goeldi (Tylenchida) in two vegetable growing areas of Senegal. J. Agronomie 9:877-884. https://doi.org/10.1051/agro:19890905
  5. Bost, S.C. and A. Triantaphyllou. 1987. Genetic basis of the epidemiological effects of resistance to Meloidogyne incognita in tomato cultivar Small Fry. J. Nematol. 44:540-544.
  6. Bridge, J. and S.L.J. Page. 1980. Estimation of root-knot nematode infestation levels on roots using a rating chart. Trop. Pest Manage 26:296-298. https://doi.org/10.1080/09670878009414416
  7. Castagnone-Sereno, P., M. Bongiovanni, and A. Dalmasso. 1993. Stable virulence against the tomato resistance Mi gene in the parthenogenetic root-knot nematode Meloidogyne incognita. Phytopathology 83:803-805. https://doi.org/10.1094/Phyto-83-803
  8. Cho, H.J., S.C. Han, and D.G. Choi. 1986. Screening peanut, pepper, cucumber, and tomato varieties for resistance to root-knot nematode, Meloidogyne hapla. Res. Rept. RDA. 28:94-97.
  9. Cho, M.R., B.C. Lee, D.S. Kim, H.Y. Jeon, M.S. Yiem, and J.O. Lee. 2000. Distribution of plant-parasitic nematodes in fruit vegetable production areas in Korea and identification of root-knot nematodes by enzyme phenotypes. Korean J. Appl. Entomol. 39:123-129.
  10. Choi, Y.E. and H.Y. Choo. 1978. A study on root-knot nematodes affecting economic crops in Korea. Kor. J. Plant Prot. 17:89-98.
  11. Chon, H.S., H.J. Park, S.G. Yeo, S.D. Park, and Y.E. Choi. 1996. Technical development for control on soil nematodes (Meloidogyne spp.) of oriental melon in plastic film house. RDA J. Agri. Sci. 38:401-407.
  12. Dropkin, V.H. 1969. The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: Reversal by temperature. Phytopathology 59:1632-1637.
  13. Fassuliotis, G. 1985. The role of nematologist in the development of resistance cultivars, p. 233-240. In: J.N. Sasser and C.C. Cater (eds.). An advanced treaties on Meloidogyne. Vol. I. Biology and control. North Carolina State University, Raleigh, North Carolina, USA.
  14. Gilbert, J.C. and D.C. McGuire. 1956. Inheritance of resistance to severe root knot from Meloidogyne incognita in commercial type tomatoes. Proc. Am. Soc. Hortic. Sci. 68:437-442.
  15. Ho, J.Y, R. Weide, H.M. Ma, M.F. van Wordragen, K.N. Lambert, M. Koornneef, P. Zabel, and V.M. Williamson. 1992. The root-knot nematode resistance gene (Mi) in tomato: Construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes. Plant J. 2:971-982.
  16. Holtzmann, O.V. 1965. Effects of soil temperature on resistance of tomato to root-knot nematode (Meloidogyne incognita). Phytopathology 55:990-992.
  17. Kaloshian, I., V.M. Williamson, G. Miuao, D.A. Lawn, and B.B. Westerdahl. 1996. "Resistance-breaking" nematodes in California tomatoes. Calif. Agric. 50:18-19.
  18. Kim, D.G. 2001. Occurrence of root-knot nematodes on fruit vegetables under greenhouse conditions in Korea. Res. Plant Dis. 7:69-79.
  19. Kim, D.G. and J.H. Lee. 2008. Economic threshold of Meloidogyne incognita for greenhouse grown cucumber in Korea. Res. Plant Dis. 14:117-121. https://doi.org/10.5423/RPD.2008.14.2.117
  20. Kim, D.G. and S.K. Choi. 2001. Effects of incorporation method of nematicides on reproduction of Meloidogyne arenaria. Korean J. Appl. Entomol. 40:89-95.
  21. Kim, D.G., Y.G. Lee, and B.Y. Park. 2001. Root-knot nematode species distributing in greenhouses and their simple identification. Res. Plant Dis. 7:49-55.
  22. Kim, H.H., H.Y. Choo, C.G. Park, S.M. Lee, and J.B. Kim. 1998. Biological control of the northern root-knot nematode, Meloidogyne hapla with plant extract. Korean J. Appl. Entomol. 37:199-20.
  23. Kim, H.H., M.R. Cho, T.J. Kang, J.A. Jung, and Y.K. Han. 2010. Screening of tomato cultivars resistant to root-knot nematode, Meloidogyne incognita. Res. Plant Dis. 16:294-298. https://doi.org/10.5423/RPD.2010.16.3.294
  24. Kim, J.I. and S.C. Han. 1998. Effect of solarization for control of root-knot nematode (Meloidogyne spp.). Korean J. Appl. Entomol. 27:1-5.
  25. Kinloch, R.A. and K. Hinson. 1972. The Florida program for evaluating soybean (Glycine max L. Merr.) genotypes for susceptibility to root-knot nematode disease. Proc. Soil Crop Sci. Soc. Florida 32:173-176.
  26. Medina-Filho, H.P. and M.A. Stevens. 1980. Tomato breeding for nematode resistance: Survey of resistant varieties for horticultural characteristics and genotype of acid phosphatase. Acta Hortic. 100:383-391.
  27. Meng, Q.P., H. Long, and J.H. Xu. 2004. PCR assays for rapid and sensitive identification of three major root-knot nematodes, Meloidogyne incognita, Meloidogyne javanica and Meloidogyne arenaria. Acta Phytopathol. Sinica 34:204-210.
  28. Mitkowski, N.A. and G.S. Abawi. 2003. Reproductive fitness on lettuce of Meloidogyne hapla from New York State vegetable fields. Nematology 5:77-83. https://doi.org/10.1163/156854102765216713
  29. Noling, J.W. 2000. Effects of continuous culture of resistant tomato cultivars on Meloidogyne incognita soil population density and pathogenicity. J. Nematol. 32:452.
  30. Oka, Y., B. Ben-Daniel, and Y. Cohen. 2012. Nematicidal activity of the leaf powder and extracts of Myrtus communisagainst the root-knot nematode Meloidogyne javanica. Plant Pathol. 61:1012-1020. https://doi.org/10.1111/j.1365-3059.2011.02587.x
  31. Paulson, R.E. and J.M. Webster. 1972. Ultrastructure of the hypersensitive reaction in roots of tomato, Lycopersicon esculentum L., to infection by the root-knot nematode, Meloidogyne incognita. Physiol. Plant Pathol. 2:227-234. https://doi.org/10.1016/0048-4059(72)90005-7
  32. Philis, J. and N. Vakis, 1977. Resistance of tomato varieties to the root-knot nematodes Meloidogyne javanica in Cyprus. Nematol. Mediterr. 5:39-44.
  33. Rhoades, H.L. 1976. Effects of Indigofera hirsute on Belonolaimus longicaudatus, Meloidogyne incognita, and M. javanica and subsequent crop yield. Plant Dis. Rep. 60:384-386.
  34. Riggs, R.D. and N.N. Winstead. 1959. Studies on resistance in tomato to root-knot nematodes and on occurrence of pathogenic biotypes. Phytopathology 49:716-724.
  35. Roberts, P.A., A. Dalmasso, G.B. Cap, and P. Castagnone-Sereno. 1990. Resistance in Lycopersicon peruvianum to isolates of Mi gene compatible Meloidogyne populations. J. Nematol. 22:585-589.
  36. Roberts, P.A. and I.J. Thomason. 1986. Variability in reproduction of isolates of Meloidogyne incognita and M. javanica on resistant tomato genotypes. Plant Dis. 70:547-551. https://doi.org/10.1094/PD-70-547
  37. Smith, P.G. 1944. Embryo culture of a tomato species hybrid. Proc. Am. Soc. Hortic. Sci. 44:413-416.
  38. Sorribas, F.J., C. Ornat, S. Verdejo-Lucas, M. Galeano, and J. Valero. 2005. Effectiveness and profitability of the Mi-resistant tomatoes to control root-knot nematodes. Eur. J. Plant Pathol. 111:29-38. https://doi.org/10.1007/s10658-004-1982-x
  39. Taylor, A.L. and J.N. Sasser. 1978. Biology, identification and control of root-knot nematodes (Meloidogyne species). Coop. Pub. Dept. Plant Pathol. North Carolina State University and United States Agency for International Development, North Carolina State University Graphics, Raleigh, USA. p. 111.
  40. Tesarova, B., M. Zouhar, and P. Rysanek. 2003. Development of PCR for specific determination of root-knot nematode Meloidogyne incognita. Plant Protec. Sci. 39:23-28.
  41. Trudgill, D.L. 1991. Resistance to and tolerance of plant parasitic nematodes in plants. Annu. Rev. Phytopathol. 29:167-193. https://doi.org/10.1146/annurev.py.29.090191.001123
  42. Tzortzakakis, E.A. and S.R. Gowan. 1996. Occurrence of a resistance-breaking pathotype of Meloidogyne javanica on tomatoes in Crete, Greece. Fund. Appl. Nematol. 19:960-967.
  43. Tzortzakakis, E.A., V.C. Blok, M.S. Phillips, and D.L. Trudgill. 1999. Variation in root-knot nematode (Meloidogyne spp) in Crete in relation to control with resistant tomato and pepper. Nematology 1:499-506. https://doi.org/10.1163/156854199508496
  44. Umesh, K.C., H. Ferris, and D.E. Bayer. 1994. Competition between the plant-parasitic nematodes Pratylenchus neglectus and Meloidogyne chitwoodi. J. Nematol. 26:286-295.
  45. Wiratno, D., H. Taniwiryonoc, J.A.G. Van den Bergb, I.M. Riksend, C.M. Rietjensb, S.R. Djiwantia, J.E. Kammengad, and A.J. Murkb. 2009. Nematicidal activity of plant extracts against the root-knot nematode, Meloidogyne incognita. Open Nat. Prod. J. 2:77-85. https://doi.org/10.2174/1874848100902010077

Cited by

  1. Development of Efficient Screening Methods for Resistant Cucumber Plants to Meloidogyne incognita vol.20, pp.2, 2014, https://doi.org/10.5423/RPD.2014.20.2.119
  2. Characterization of Streptomyces netropsis Showing a Nematicidal Activity against Meloidogyne incognita vol.21, pp.2, 2015, https://doi.org/10.5423/RPD.2015.21.2.050
  3. 뿌리혹선충 Meloidogyne incognita에 대한 저항성 고추를 선발하기 위한 효율적인 검정법 확립 vol.34, pp.2, 2014, https://doi.org/10.12972/kjhst.20160029
  4. Meloidogyne incognita에 대한 Streptomyces flavogriseus KRA15-528의 살선충활성 vol.22, pp.4, 2016, https://doi.org/10.5423/rpd.2016.22.4.227
  5. Nematicidal and Plant Growth-Promoting Activity of Enterobacter asburiae HK169: Genome Analysis Provides Insight into Its Biological Activities vol.28, pp.6, 2018, https://doi.org/10.4014/jmb.1801.01021
  6. Biological Control of Root-Knot Nematodes by Organic Acid-Producing Lactobacillus brevis WiKim0069 Isolated from Kimchi vol.35, pp.6, 2019, https://doi.org/10.5423/ppj.oa.08.2019.0225