KYUNGPOOK Math. J. 54(2014), 155-156 http://dx.doi.org/10.5666/KMJ.2014.54.1.155

Erratum : Two Variations of the Choquet Game

JILING CAO

School of Computer and Mathematical Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand e-mail: jiling.cao@aut.ac.nz

ZBIGNIEW PIOTROWSKI

Department of Mathematics and Statistics, Youngstown State University, Youngstown, Ohio 44555, U.S.A. e-mail: zpiotr@as.ysu.edu

Erratum

In this short note, we provide a correction to the proof of Theorem 2.1 appeared in "J. Cao and Z. Piotrowski, Two Variations of the Choquet Game, *Kyungpook Math. J.* 44 (2004), 495–504".

The following theorem was proved in [1] as Theorem 2.1.

Theorem 2.1.([1]) The following are equivalent for a regular space X.

- (a) There is an open sieve $(\{U_i : i \in I_n\}, \pi_n)_{n < \omega}$ on X such that for each π -chain $(i_n)_{n < \omega}$ with $\bigcap_{n < \omega} U_{i_n} \neq \emptyset$, $(U_{i_n})_{n < \omega}$ is a complete sequence.
- (b) Player α has a stationary winning strategy in MP(X).
- (c) Player α has a winning strategy in MP(X).

Recently, Professor Dikran Dikranjan and D. Hounkanli Komlan have pointed to us that the proof of $(c) \Rightarrow (a)$ provided in [1] is invalid. In this short note, we shall provide a corrected version for this part.

Proof. (c) \Rightarrow (a). Suppose that α has a winning strategy σ in MP(X). Let $I_0 = \{i_0\}$ be an arbitrary singleton, and define $U_{i_0} = X$. For each n > 0, define I_n as the set of all finite σ -sequences of length n. Let $U_i = \sigma(\langle x_0, B_0 \rangle, \cdots, \langle x_{n-1}, B_{n-1} \rangle)$ for every $i = (\langle x_0, B_0 \rangle, \cdots, \langle x_{n-1}, B_{n-1} \rangle) \in I_n$. Define $\pi_0 : I_1 \to I_0$ such that $\pi_0(i_1) = i_0$ for every $i_1 \in I_1$. Furthermore, for each $n \in \mathbb{N}$, we define a map $\pi_n : I_{n+1} \to I_n$ such that

$$\pi_n(\langle x_0, B_0 \rangle, \cdots, \langle x_{n-1}, B_{n-1} \rangle, \langle x_n, B_n \rangle) = (\langle x_0, B_0 \rangle, \cdots, \langle x_{n-1}, B_{n-1} \rangle)$$

Received April 9, 2013.

155

J. Cao and Z. Piotrowski

for every finite σ -sequence $(\langle x_0, B_0 \rangle, \cdots, \langle x_{n-1}, B_{n-1} \rangle, \langle x_n, B_n \rangle)$ in I_{n+1} . It can be checked readily that $(\{U_i : i \in I_n\}, \pi_n)_{n < \omega}$ is an open sieve on X. We are to prove that this sieve satisfies (a). Let $(i_n)_{n < \omega}$ be any π -chain with $\bigcap_{n < \omega} U_{i_n} \neq \emptyset$. By the construction above, there exists a σ -sequence $(\langle x_n, B_n \rangle)_{n < \omega}$ in MP(X) corresponding to $(i_n)_{n < \omega}$ such that $\bigcap_{n < \omega} B_n \neq \emptyset$. Let \mathcal{F} be a filterbase controlled by $(U_{i_n})_{n < \omega}$. Then, \mathcal{F} is also controlled by $(B_n)_{n < \omega}$. If \mathcal{F} does not cluster at anywhere, then for each point $p \in \bigcap_{n < \omega} B_n$ there exist an open neighborhood W_p of p and an $F_p \in \mathcal{F}$ with $W_p \cap F_p = \emptyset$. Since $\bigcap_{n < \omega} B_n$ is compact, there are finitely many points p_1, \cdots, p_k in $\bigcap_{n < \omega} B_n$ such that $W = \bigcup_{i=1}^k W_{p_i} \supseteq \bigcap_{n < \omega} B_n$. It follows that $W \cap (\bigcap_{i=1}^k F_{p_i}) = \emptyset$. Since σ is a winning strategy for α , then by condition (ii) in MP(X), we may select an $F \in \mathcal{F}$ such that $F \subseteq (\bigcap_{i=1}^k F_{p_i}) \cap W$. However, this is a contradiction. The proof is completed.

References

 Z. Piotrowski, Two variations of the Choquet game, Kyungpook Math. J., 44(2004), 495-504.