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ABSTRACT. In this paper, we introduce S-metric spaces and give their some properties.
Also we present a common fixed point theorem for multivalued maps on complete S-metric
spaces. The single valued case and an illustrative example are given.

1. Introduction

In the present paper, we introduce the concept of S-metric spaces and give some
properties of them. Then a common fixed point theorem for two multivalued mappings
on complete S-metric spaces is given. In addition, we give an illustrative example for the
single valued case.

We begin with the following definition.

Definition 1.1. Let X be a nonempty set. An S-metric on X is a function S : X* —
[0,00) that satisfies the following conditions, for each z,y,z,a € X,

L S(z,y,2) 20,
2. S(z,y,z) =0if and only if z =y = 2,
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3. S(x,y,2) < S(x,z,0) + S(y,y,a) + S(z,2,a).
The pair (X, S) is called an S-metric space.

Immediate examples of such S-metric spaces are:

1. Let X =R"™ and || - || a norm on X, then S(z,y,2) = ||y + z — 2z|| + ||y — z|| is an
S-metric on X.

2. Let X = R™ and || - || a norm on X, then S(z,y,2) = ||z — z|| + ||y — 2|| is an
S-metric on X.

3. Let X be a nonempty set, d is ordinary metric on X, then S(z,y,2) = d(z,z) +
d(y, z) is an S-metric on X.

Lemma 1.2. In an S-metric space, we have S(z,z,y) = S(y,y, ).
Proof. By third condition of S-metric, we have

(1.1) S(z,z,y) < S(z,z,z) + S(z,z,z) + S(y,y,z) = S(y,y, x)
and similarly

(1.2) S(y,y,2) < S(y,y.9) + Sy, y,9) + S(z,2,y) = S(z,2,y).
Hence by (1.1) and (1.2), we get S(z,z,y) = S(y,y, ).

Definition 1.3. Let (X, S) be an S-metric space. For r > 0 and € X we define the open
ball Bs(z,r) and closed ball Bg[z,r] with center z and radius r as follows respectively:

Bs(z,r) ={y € X : S(y,y,2) <r},
Bslz,r|={y e X : S(y,y,z) <r}.

Example 1.4. Let X = R. Denote S(z,y,2) = |y + 2z — 2z| + |y — 2| for all z,y,z € R.
Thus
BS(172) = {yGR:S(y,y,1)<2}:{y€R:\y—1|<1}
= {yeR:0<y<2}=(0,2).

Definition 1.5. Let (X, S) be an S-metric space and A C X.
1. If for every x € A there exists r > 0 such that Bs(z,r) C A, then the subset A is
called open subset of X.

2. Subset A of X is said to be S-bounded if there exists r > 0 such that S(z,z,y) <r
for all z,y € A.

3. A sequence {z,} in X converges to z if and only if S(zn,zn,z) = 0 as n — oo.
That is for each € > 0 there exists ng € N such that

Vn>no= S(Tn,xn,z) <€

and we denote by lim,, . x, = .
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4. Sequence {z,} in X is called a Cauchy sequence if for each ¢ > 0 , there exists
no € N such that S(zn,Zn,Tm) < € for each n,m > ng.

5. The S-metric space (X, S) is said to be complete if every Cauchy sequence is con-
vergent.

6. Let 7 be the set of all A C X with x € A if and only if there exists r > 0 such that
Bg(z,7) C A. Then 7 is a topology on X (induced by the S-metric S).

Lemma 1.6. Let (X, S) be an S-metric space. If r > 0 and x € X, then the ball Bs(xz,r)
is open subset of X.

Proof. Let y € Bs(z,r), hence S(y,y,z) < r. If set § = S(z,z,y) and r' = ’“;5 then we

prove that Bs(y,r’) C Bs(w,r). Let 2 € Bs(y,r’), then S(z, z,y) < r’. By third condition
of S-metric we have

S(z,2,2) < S(2,2,9) + S(z,2,y) + S(z,2,y) <2’ + 5 =7
Hence Bs(y,r’) C Bs(x,r). That is the ball Bs(z,r) is a open subset of X.

Lemma 1.7. Let (X, S) be an S-metric space. If sequence {z,} in X converges to x, then
T 1S Unique.

Proof. Let {xn} converges to z and y, then for each € > 0 there exist n1,n2 € N such that

€
Vn>n = S(@n,zn,x) < 1

and

Vn>ny = S(xn,Tn,y) < %

If set no = max{ni,n2}, then for every n > ng by third condition S-metric we have:
e €
S(z,z,y) < 2S(z,z,20) + S(y,y,zn) < 3 + 5 =€

Hence S(z,z,y) =0so x = y.

Lemma 1.8. Let (X,S) be an S-metric space. If sequence {x,} in X is converges to z,
then {zn} is a Cauchy sequence.

Proof. Since lim,,_, o, € = x then for each £ > 0 there exists ni,n2 € N such that
€
n>ny = S(Tn, Tn,z) < 1

and

m > ng = S(Tm, Tm, ) < %

If set np = max{ni,n2}, then for every n,m > ng by third condition of S-metric we have:

S(Tn, Tn, Tm) < 25(Tn, Tn,x) + S(Tm, Tm,x) < % + g =e.

Hence {z,} is a Cauchy sequence.

Lemma 1.9. Let (X,S) be an S- metric space. If there exist sequences {xn} and {yn}
such that limy,, o ©, = and lim, o Yyn =y, then

lim S($n7$n7yn) - S(QZ’,CU, y)

n—00



116 S. Sedghi, I. Altun, N. Shobe and M. A. Salahshour

Proof. Since lim,_ 0o ©rn, = x and lim, o y» = y, then for each € > 0 there exist
ni,n2 € N such that

Vn>n = S@n,xn,x) <

NGO}

and

Vn>ne = SYn,yn,y) < Z

If set no = max{ni,n2}, then for every n > ng by third condition of S-metric we have:

S(xmxmyn) < QS(xn,xn,x)—i—S(yn,yn,m)
< 25(%7%7%)+2S(ymymy)+5(w,w7y)
< %+%+S($,I7y):€+5(%$ay)
Hence we have:
(1.3) S(@n, Tn,yn) — S(z, 2,y) <e.

On the other hand, we have

S(x,x,y) < 28(x,x,2.) + S(y,y,2n)
< 28(w, 2 xn) + 28y, ¥, Yn) + S(@ns Tny Yn)
< G5 S@nmnn) = &+ S(@nzn,yn),
that is
(14) S(m,x,y)—S(xn,xn,yn) <e.

Therefore by relations (1.3) and (1.4) we have |S(zn, Zn,yn) — S(z, z,y)| < &, that is

lim S(l‘n,l‘n,yn) = S(I7I7y)

n—r oo

Let (X,S) be an S-metric space, C'(X) denotes the family of all nonempty closed
subsets of X. For A and B two nonempty subsets of X we define;

dist(z, A) = ;22{5(3@@,@}

and
8(A,A,B)= sup {S(a,a,b)}.

acA, beB

By the definition of dist(x, A), it is clear that dist(z, A) =0 < z € A.

2. Implicit Relations

Implicit relations on metric spaces have been used in many articles. For examples, [1],
12], [3], [4], [5], [6], [7], [8]- Let R4 be the set of nonnegative real numbers and let T be the
set of all functions T : RS — R satisfying the following conditions:



Ty :

T1:
T2:

T5 :
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T (lim infp,) < lim infT(py,) for any p, € RS, where lim infp, means component-wise
n—oo n—oo n— oo
lim inf.
T'(t1,...,ts) is nonincreasing in to, ..., ts.
there exists a continuous strictly increasing function ¢ : R4 — Ry with ¢(t) < ¢ for
t > 0 and € > 0 such that the inequalities
u<w-+e
and
T(w,v,v,u,2u+v,0) <0 or T(w,v,u,v,0,2u+v) <0
implies w < ¢(v).

T(w,0,v,0,0,v) < 0 and T'(w,0,0,v,v,0) < 0 implies w < ¢(v), where ¢ is the
function in T5.

Example 2.1. T(t1,...,ts) = t1 — f(max{t2,ts,ta, é(t5 + t6)}), where f : Ry — R4
continuous strictly increasing function with f(¢) < ¢ for ¢t > 0.

To and 17 : Obviously.

T : Let u > 0, then choose ¢ > 0 so that f(u)+e < u (this is possible since f(u) < u).

Now

let w < w+e and T(w,v,v,u,2u +v,0) = w — f(max{u,v}) < 0. If u > v, then

u<w+e < f(u)+e < u, a contradiction. Thus v < v and w < f(v). Similarly, u < w+e€
and T'(w,v,u,v,0,2u +v) < 0 imply w < f(v). If u = 0, then w < f(v). Thus T3 is
satisfied with ¢ = f.

T5: T(w,0,v,0,0,v) = T(w,0,0,v,v,0) =w — f(v) <0=w < f(v) = ¢(v).

3. Fixed Point Theory

Our main result for fixed point theory of this work as follows.

Theorem 3.1. Let (X,S) be a complete S-metric space, xo € X,r > 0 with F,G :
Bszo,r] = C(X). Suppose, for all x,y € Bslzo,r] sets Fx, Gy are bounded and

(3.1)

T(8(Fx, Fz,Gy),S(z,z,y),dist(x, Fz), dist(y, Gy), dist(z, Gy), dist(y, Fx)) <0

where T' € T. Also assume the following conditions are satisfied:

(3.2)

and

(3.3)

r—o(r)

dist(zo, Fzo) < 5

S ()

where ¢ is the function in T>. Then there exists ¢ € Bg[xo,r] with x € Fx and x € Gzx.

Proof. From (3.2) we can choose x1 € Fxo with

(3.4)

r—¢(r)

S(mo,mo,l‘l) < 5
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Hence S(z1,z1,20) < 7 so 21 € Bg[zo,r]. Since ¢ is strictly increasing by (3.4) we can
choose € > 0 such that

(3.5) o(S(zo,z0,71)) +€ < @ (#) '

On the other hand, for this € there is 2 € Gx1 so that

(3.6) S(z1,x1,22) < dist(xy, Gx1) + € < 8(Fxo, Fxo,Gry) + €.

Now since o, x1 € Bg[zo, r] we can use the inequality (3.1) to obtain
T(8(Fxo, Fxo,Gzx1), S(x0, xo, x1), dist(zo, Fxo), dist(x1, Gx1),

dist(zo, Gz1), dist(z1, Fxo)) < 0.

From T we have
T(8(Fxo, Fxo,Gx1), S(x0, xo, 1), S(w0, 2o, x1), S (21, 1, 22), S(20, T0, 22),0) < 0,

that is
T(w,v,v,u,2u+v,0) <0,

where w = 8(Fzo, Fzo, Gz1),v = S(x0,20,21) and u = S(x1,x1,x2). Therefore, from 75,

S(F:Eo, F:Eo, Gml) < (Z)(S(:Eo, Zo, 1171))

and (3.6) yields
S(x1,z1,22) < ¢(S(w0, %0, 21)) + €.

Thus from (3.5) we have:

(3.7) S(z1,31,33) < & (T_TW)) .
Now by (3.3), (3.4), (3.7) and third condition of S-metric have:

S(JJQ,.%‘Q,.T()) ZS(JJ(),.Z‘(),.TQ) < 25($0,$0,$1)+S($1,1’1,$2)

— i (r— o(r)
— T—AAY) <
< r ¢(r)+2;¢< 3 >_r
S0 x2 € Bglzo,r]. Again by (3.7) and strictly increasing ¢ there is § > 0 so that

(3.8) S(S(w1,21,22)) +6 < ¢ (T—Tgb(r))

also for this § > 0 there is 3 € F'zo so that
(3.9) S(x2, 2, x3) < dist(xa, Fx2) + 0 < 8(Gx1,Gx1, Fx2) + 4.
As above, since z1, 22 € Bs[zo,r] we can use the inequality (3.1) to obtain

T(8(Fx2, Fx2,Gx1), S(x2, 2, x1), dist(x2, Fx2),
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dist(xz1, Gxy), dist(z2, Gx1), dist(z1, Fx2)) <0
and so from 77 we have
T(8(Fx2, Fx2,Gr1), S(w2, 22, 21), S(x2, T2, 23), (21,21, 22),0, S(x1,21,23)) <0

that is
T(w,v,u,v,0,2u+v) <0,

where w = 8(Fx2, Fr2,Gr1),v = S(x1,21,%2) and u = S(x2,x2,x3). Therefore from T,
w < ¢(v)

that is
8(Fx2, Faa, Gz1) < ¢(S(21, 21, 22))

and so (3.9) gives
S(w2, 22, 23) < ¢(S(1,71,22)) + 4.
Thus from (3.8) we have

2
Now (3.3), (3.4), (3.7), (3.10) and third condition of S-metric implies:

(3.10) S(za, w2, 73) < ¢° <L¢’(T)) .

S(xg,wg,xo) ZS(xo,xo,wg) < 25(%’0,&20,%1)+25($1,$1,$2)+S($2,ZE2,CIZ3)

< r—g(r)+26 (T_T‘W)> + ¢ <’"_T¢(T)>

< r—¢>(r)+2§¢i (%‘M) <r

Thus z3 € Bs[xo, 7"}.
Continuing this way we can obtain a sequence {zn} C Bg[zo,r] such that zony2 €
Gxan+1 and r2n41 € Fxa, for n > 0 and

S(Tn, Tn, Tnt1) < " (#) .

Next we show that {x,} is a Cauchy sequence. Notice by (3.3) and above inequality for
each n,m € N with m > n we have:

m—2
S(xnvxn,xm) S 2 Z S(JZ‘i,JZ’i,J?i-Q»l) + S(xm_l,xm_1,xm)
m_—l m—1 ) 7‘—(}5(7")
< 2 Z S(xi, i, Tig1) < 2 Z: o} <T)
<

2o ()

so (3.3) guarantees that {z,} is a Cauchy sequence. Thus there exists € Bg[zo, ] with
Zn — x. It remains to show z € Fix and € Gz. For n even (since x,,x € Bs[:co,r]) we
can use the inequality (3.1), we have

T8(Fx,Fx,Grn_1),S(x,x, Tn-1),dist(z, Fzr),dist(xn—1, GTn_1),
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dist(z, Gxn—1),dist(xn—1,Fx)) <O0.
Now taking limit inferior as n — oo (using 7p) we have (notice dist(x,Grp—1) <

S(z,x,zn) — 0, and also dist(xrn—1,Gxn-1) < S(Tn-1,Tn—1,2n) — 0)

T(lim inf8(Fz, Fx,Gxn-1),0,dist(z, Fx),0,0,dist(z, Fx)) < 0.
n—o0

From T3 we have
liminf§(Fx, Fx,Grn_1) < ¢(dist(z, Fx)).

n—>00

Now

dist(z, Fz) < 25(z,z,xn) + dist(zn, Fx) < 2S(z, 2, 2,) + 8(G2pn-1, GTrn_1, F)

and so
dist(z, Fz) < 0+ lUminf8(Fz, Fz,Gr,—1) < ¢(dist(z, Fx)).
n—o0
Thus dist(z, Fx) = 0 since ¢(t) < t for t > 0, so € Fx = Fz.
For n odd ,

dist(z,Gz) < S(x,z,xn) + dist(zn, Gx) < S(x,z,24) + 8(Fxpn_1, Frn_1,Gx),
and as above we obtain dist(z,Gx) =0, so z € Gz.
Now we give some corollaries.

Corollary 3.2. Let (X,S) be a complete S-metric space, xo € X,r > 0 with F,G :
Bslzo,r] = C(X). Suppose, for all x,y € Bg[zo,r] sets Fx,Gy are bounded and

dist(z,Gy) dist(y, Fx)

S8(Fz, Fz,Gy) < kmax{S(z,z,y), dist(z, Fz), dist(y, Gy), 3 , 3 }

where 0 < k < 1. Also assume the following condition is satisfied:

1—-k
2

dist(zo, Fxg) < T

Then there exists x € Bs[xo,r] with x € Fx and x € Gz.

Proof. By Theorem 3.1 , it is enough to set T'(t1,ta, ..., ts) = t1 — kmax{ta, ts, s, &, %6 }.
In this case, ¢(t) = kt and

oo

Corollary 3.3. Let (X,S) be a complete S-metric space, xo € X,r > 0 with F,G :
Bgslzo,r] = X. Suppose for all x,y € Bs[xo,T],

Sz, z,Gy) Sy, y, Fw)}
3 ' 3

S(Fz,Fx,Gy) < kmax{S(z,z,y), S(z,z, Fx),S(y,y, Gy),

where 0 < k < 1. Also assume the following condition is satisfied:

1—k
S(zo, xo, Fzo) < —5
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Then there exists a unique x € Bs[xo,r] with Fx = Gz = .

Proof. By Corollary 3.2 , there exists an z € X such that Fx = Gz = z. It is enough
prove that z is unique.
Let y be another common fixed point of F' and G, that is y = F'y = Gy, then we have
S(x,x,y) = S(Fz,Fz,Gy) < kmax{S(z,z,y),S(x,z,z),5,y,9)}
= kS(z,z,y),

which is a contradiction. Therefore F' and G have a unique common fixed point in Bg[zo, 7].

Corollary 3.4. Let (X,S) be a complete S-metric space, xo € X,r > 0 with F :
Bs[zo,r] = X. Suppose for all x,y € Bs|xo, 7],
S(z,x, Fy) S(y,y, Fz)

3 ’ 3 }

S(Fx,Fx, Fy) < kmax{S(z,z,y),S(z,z, Fx),S(y,y, Fy),

where 0 < k < 1. Also assume the following condition is satisfied:
1-k
2

Then there exists a unique © € Bg[xo,r] with Fx = z.

S(IoﬂCmFmo) <

T.

Now we give an example.
Example 3.5. Let X = R and S(z,y,2) = |z — z| + |y — 2| .Then (X, S) is a complete
S-metric space. Let xop = 1 and r = 6, then
Bs[xo,’l‘] = Bs[l, 6]
= {yeX:5(yyz) <6}
= [-2,4].

Now let F' : Bs[zo,r] = X, Fo = § and let k = %, then

1 3 1-k
S(zo,z0, Fzo) = S(1, ,2) < 3 5"

Also, for all z,y € Bg[zo, ], we have
S(Fz,Fz,Fy) = 2|Fz— Fy|

= |z —y

= Gl

= st

< L wax(S(e,.0), 5(,7, Fa),S(y,v, Fy), 20D S@0 T2,

Therefore all conditions of Corollary 3.4 are satisfied, thus F' has a unique fixed point in
Bslzo, 7] = [—2,4].
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