The Line n-sigraph of a Symmetric n-sigraph-V

P. Siva Kota Reddy*

Department of Mathematics, Siddaganga Institute of Technology, Tumkur-572 103, India.
e-mail: reddy_math@yahoo.com; pskreddy@sit.ac.in
K. M. Nagaraja

Department of Mathematics, JSS Academy of Technical Education, Bangalore-560 060, India.
e-mail : nagkmn@gmail.com
M. C. Geetha

Department of Mathematics, East West Institute of Technology, Bangalore-560 091, India.
e-mail: geethalingarajub@gmail.com
Abstract. An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)\left(S_{n}=(G, \mu)\right)$, where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}\left(\mu: V \rightarrow H_{n}\right)$ is a function. The restricted super line graph of index r of a graph G, denoted by $\mathcal{R} \mathcal{L}_{r}(G)$. The vertices of $\mathcal{R} \mathcal{L}_{r}(G)$ are the r-subsets of $E(G)$ and two vertices $P=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ and $Q=\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}$ are adjacent if there exists exactly one pair of edges, say p_{i} and q_{j}, where $1 \leq i, j \leq r$, that are adjacent edges in G. Analogously, one can define the restricted super line symmetric n-sigraph of index r of a symmetric n-sigraph $S_{n}=(G, \sigma)$ as a symmetric n-sigraph $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)=\left(\mathcal{R} \mathcal{L}_{r}(G), \sigma^{\prime}\right)$, where $\mathcal{R} \mathcal{L}_{r}(G)$ is the underlying graph of $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$, where for any edge $P Q$ in $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$, $\sigma^{\prime}(P Q)=\sigma(P) \sigma(Q)$. It is shown that for any symmetric n-sigraph S_{n}, its $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ is i-balanced and we offer a structural characterization of super line symmetric n-sigraphs of index r. Further, we characterize symmetric n-sigraphs S_{n} for which $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right) \sim \mathcal{L}_{r}\left(S_{n}\right)$ and $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right) \cong \mathcal{L}_{r}\left(S_{n}\right)$, where \sim and \cong denotes switching equivalence and isomorphism and $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ and $\mathcal{L}_{r}\left(S_{n}\right)$ are denotes the restricted super line symmetric n-sigraph of index r and super line symmetric n-sigraph of index r of S_{n} respectively.

* Corresponding Author.

Received February 21, 2012; accepted May 8, 2013.
2010 Mathematics Subject Classification: 05C22.
Key words and phrases: Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Restricted super line symmetric n-sigraphs, Super line symmetric n-sigraphs, Complementation.

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [2]. We consider only finite, simple graphs free from self-loops.

Let $n \geq 1$ be an integer. An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is symmetric, if $a_{k}=$ $a_{n-k+1}, 1 \leq k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq\right.$ $n\}$ be the set of all symmetric n-tuples. Note that H_{n} is a group under coordinate wise multiplication, and the order of H_{n} is 2^{m}, where $m=\left\lceil\frac{n}{2}\right\rceil$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=$ $(G, \sigma)\left(S_{n}=(G, \mu)\right)$, where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}\left(\mu: V \rightarrow H_{n}\right)$ is a function.

In this paper by an n-tuple/ n-sigraph $/ n$-marked graph we always mean a symmetric n-tuple/symmetric n-sigraph/symmetric n-marked graph.

An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the identity n-tuple, if $a_{k}=+$, for $1 \leq k \leq n$, otherwise it is a non-identity n-tuple. In an n-sigraph $S_{n}=(G, \sigma)$ an edge labelled with the identity n-tuple is called an identity edge, otherwise it is a non-identity edge.

Further, in an n-sigraph $S_{n}=(G, \sigma)$, for any $A \subseteq E(G)$ the n-tuple $\sigma(A)$ is the product of the n-tuples on the edges of A.

In [17], the authors defined two notions of balance in n-sigraph $S_{n}=(G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [6]):

Definition 1.1. Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then,
(i) S_{n} is identity balanced (or i-balanced), if product of n-tuples on each cycle of S_{n} is the identity n-tuple, and
(ii) S_{n} is balanced, if every cycle in S_{n} contains an even number of non-identity edges.
Note: An i-balanced n-sigraph need not be balanced and conversely.
The following characterization of i-balanced n-sigraphs is obtained in [17].
Proposition 1.1. (E. Sampathkumar et al. [17])
An n-sigraph $S_{n}=(G, \sigma)$ is i-balanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge uv is equal to the product of the n-tuples of u and v.

Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S_{n} defined as follows: each vertex $v \in V, \mu(v)$ is the n-tuple which is the product of the n-tuples on the edges incident with v. Complement of S_{n} is an n-sigraph
$\overline{S_{n}}=\left(\bar{G}, \sigma^{c}\right)$, where for any edge $e=u v \in \bar{G}, \sigma^{c}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ as defined here is an i-balanced n-sigraph due to Proposition 1.1 [9].

In [17], the authors also have defined switching and cycle isomorphism of an n-sigraph $S_{n}=(G, \sigma)$ as follows: (See also [3, 7, 8] \& [9]-[16])

Let $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$, be two n-sigraphs. Then S_{n} and S_{n}^{\prime} are said to be isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that if $u v$ is an edge in S_{n} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ then $\phi(u) \phi(v)$ is an edge in S_{n}^{\prime} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Given an n-marking μ of an n-sigraph $S_{n}=(G, \sigma)$, switching S_{n} with respect to μ is the operation of changing the n-tuple of every edge $u v$ of S_{n} by $\mu(u) \sigma(u v) \mu(v)$. The n-sigraph obtained in this way is denoted by $\mathcal{S}_{\mu}\left(S_{n}\right)$ and is called the μ-switched n-sigraph or just switched n-sigraph.

Further, an n-sigraph S_{n} switches to n-sigraph S_{n}^{\prime} (or that they are switching equivalent to each other), written as $S_{n} \sim S_{n}^{\prime}$, whenever there exists an n-marking of S_{n} such that $\mathcal{S}_{\mu}\left(S_{n}\right) \cong S_{n}^{\prime}$.

Two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ are said to be cycle isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that the n-tuple $\sigma(C)$ of every cycle C in S_{n} equals to the n-tuple $\sigma(\phi(C))$ in S_{n}^{\prime}. We make use of the following known result (see [17]).

Proposition 1.2.(E. Sampathkumar et al. [17])
Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

In this paper, we introduced the notion called restricted super line n-sigraph of index r and we obtained some interesting results in the following sections. The restricted super line n-sigraph of index r is the generalization of line n-sigraph.

2. Restricted Super Line n-sigraph $\mathcal{L}_{r}\left(S_{n}\right)$

In [4], K. Manjula introduced the concept of the restricted super line graph, which generalizes the notion of line graph. For a given G, its restricted super line graph $\mathcal{R} \mathcal{L}_{r}(G)$ of index r is the graph whose vertices are the r-subsets of $E(G)$, and two vertices $P=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ and $Q=\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}$ are adjacent if there exists exactly one pair of edges, say p_{i} and q_{j}, where $1 \leq i, j \leq r$, that are adjacent edges in G. In [1], the authors introduced the concept of the super line graph as follows: For a given G, its super line graph $\mathcal{L}_{r}(G)$ of index r is the graph whose vertices are the r-subsets of $E(G)$, and two vertices P and Q are adjacent if there exist $p \in P$
and $q \in Q$ such that p and q are adjacent edges in G. Clearly $\mathcal{R} \mathcal{L}_{r}(G)$ is a spanning subgraph of $\mathcal{L}_{r}(G)$. From the definitions of $\mathcal{R} \mathcal{L}_{r}(G)$ and $\mathcal{L}_{r}(G)$, it turns out that $\mathcal{R} \mathcal{L}_{1}(G)$ and $\mathcal{L}_{1}(G)$ coincides with the line graph $L(G)$.

In this paper, we extend the notion of $\mathcal{R} \mathcal{L}_{r}(G)$ to realm of n-sigraphs as follows: The restricted super line n-sigraph of index r of an n-sigraph $S_{n}=(G, \sigma)$ as an n-sigraph $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)=\left(\mathcal{R} \mathcal{L}_{r}(G), \sigma^{\prime}\right)$, where $\mathcal{R} \mathcal{L}_{r}(G)$ is the underlying graph of $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$, where for any edge $P Q$ in $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right), \sigma^{\prime}(P Q)=\sigma(P) \sigma(Q)$.

Hence, we shall call a given n-sigraph S_{n} is a restricted super line n-sigraph of index r if it is isomorphic to the restricted super line n-sigraph of index $r, \mathcal{R} \mathcal{L}_{r}\left(S_{n}^{\prime}\right)$ of some n-sigraph S_{n}^{\prime}. In the following subsection, we shall present a characterization of restricted super line n-sigraph of index r.

The following result indicates the limitations of the notion $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be restricted super line n-sigraphs of index r.

Proposition 2.1. For any n-sigraph $S_{n}=(G, \sigma)$, its $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ is i-balanced.
Proof. Let σ^{\prime} denote the n-tuple of $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ and let the n-tuple σ of S_{n} be treated as an n-marking of the vertices of $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$. Then by definition of $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ we see that $\sigma^{\prime}(P, Q)=\sigma(P) \sigma(Q)$, for every edge $P Q$ of $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ and hence, by Proposition 1.1, the result follows.

For any positive integer k, the $k^{t h}$ iterated restricted super line n-sigraph of index $r, \mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
\mathcal{R} \mathcal{L}_{r}^{0}\left(S_{n}\right)=S_{n}, \mathcal{R} \mathcal{L}_{r}^{k}\left(S_{n}\right)=\mathcal{R} \mathcal{L}_{r}\left(\mathcal{R} \mathcal{L}_{r}^{k-1}\left(S_{n}\right)\right)
$$

Corollary 2.2. For any n-sigraph $S_{n}=(G, \sigma)$ and any positive integer $k, \mathcal{R} \mathcal{L}_{r}^{k}\left(S_{n}\right)$ is i-balanced.

In [16], the authors introduced the notion of the super line n-sigraph, which generalizes the notion of line n-sigraph [18]. The super line n-sigraph of index r of an n-sigraph $S_{n}=(G, \sigma)$ as an n-sigraph $\mathcal{L}_{r}\left(S_{n}\right)=\left(\mathcal{L}_{r}(G), \sigma^{\prime}\right)$, where $\mathcal{L}_{r}(G)$ is the underlying graph of $\mathcal{L}_{r}\left(S_{n}\right)$, where for any edge $P Q$ in $\mathcal{L}_{r}\left(S_{n}\right), \sigma^{\prime}(P Q)=\sigma(P) \sigma(Q)$. The above notion restricted super line n-sigraph is another generalization of line n-sigraphs.

Proposition 2.3. (P.S.K.Reddy et al. [16])
For any n-sigraph $S_{n}=(G, \sigma)$, its $\mathcal{L}_{r}\left(S_{n}\right)$ is i-balanced.
In [4], the author characterized whose restricted super line graphs of index r that are isomorphic to $\mathcal{L}_{r}(G)$.

Proposition 2.4.(K. Manjula [4])
For a graph $G=(V, E), \mathcal{R} \mathcal{L}_{r}(G) \cong \mathcal{L}_{r}(G)$ if, and only if, G is either $K_{1,2} \cup n K_{2}$ or $n K_{2}$.

We now characterize n-sigraphs those $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ are switching equivalent to their $\mathcal{L}_{r}\left(S_{n}\right)$.

Proposition 2.5. For any n-sigraph $S_{n}=(G, \sigma), \mathcal{R} \mathcal{L}_{r}\left(S_{n}\right) \sim \mathcal{L}_{r}\left(S_{n}\right)$ if, and only if, G is either $K_{1,2} \cup n K_{2}$ or $n K_{2}$.
Proof. Suppose $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right) \sim \mathcal{L}_{r}\left(S_{n}\right)$. This implies, $\mathcal{R} \mathcal{L}_{r}(G) \cong \mathcal{L}_{r}(G)$ and hence by Proposition 2.4, we see that the graph G must be isomorphic to either $K_{1,2} \cup n K_{2}$ or $n K_{2}$.

Conversely, suppose that G is either $K_{1,2} \cup n K_{2}$ or $n K_{2}$. Then $\mathcal{R} \mathcal{L}_{r}(G) \cong \mathcal{L}_{r}(G)$ by Proposition 2.4. Now, if S_{n} any n-sigraph on any of these graphs, by Proposition 2.1 and Proposition 2.3, $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ and $\mathcal{L}_{r}\left(S_{n}\right)$ are i-balanced and hence, the result follows from Proposition 1.2.

We now characterize n-sigraphs those $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ are isomorphic to their $\mathcal{L}_{r}\left(S_{n}\right)$. The following result is a stronger form of the above result.

Proposition 2.6. For any n-sigraph $S_{n}=(G, \sigma), \mathcal{R} \mathcal{L}_{r}\left(S_{n}\right) \cong \mathcal{L}_{r}\left(S_{n}\right)$ if, and only if, G is either $K_{1,2} \cup n K_{2}$ or $n K_{2}$.
Proof. Clearly $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right) \cong \mathcal{L}_{r}\left(S_{n}\right)$, where G is either $K_{1,2} \cup n K_{2}$ or $n K_{2}$. Consider the $\operatorname{map} f: V\left(\mathcal{R} \mathcal{L}_{r}(G)\right) \rightarrow V\left(\mathcal{L}_{r}(S)\right)$ defined by $f\left(e_{1} e_{2}, e_{2} e_{3}\right)=\left(e_{1}^{\prime} e_{2}^{\prime}, e_{2}^{\prime} e_{3}^{\prime}\right)$ is an isomorphism. Let σ be any n-tuple on $K_{1,2} \cup n K_{2}$ or $n K_{2}$. Let $e=\left(e_{1} e_{2}, e_{2} e_{3}\right)$ be an edge in $\mathcal{R} \mathcal{L}_{r}(G)$, where G is $K_{1,2} \cup n K_{2}$ or $n K_{2}$. Then the n-tuple of the edge e in $\mathcal{R}_{r}(G)$ is the $\sigma\left(e_{1} e_{2}\right) \sigma\left(e_{2} e_{3}\right)$ which is the n-tuple of the edge $\left(e_{1}^{\prime} e_{2}^{\prime}, e_{2}^{\prime} e_{3}^{\prime}\right)$ in $\mathcal{L}_{r}(G)$, where G is $K_{1,2} \cup n K_{2}$ or $n K_{2}$. Hence the map f is also an n-sigraph isomorphism between $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ and $\mathcal{L}_{r}\left(S_{n}\right)$.

3. Characterization of Restricted Super Line n-sigraphs $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$

The following result characterize n-sigraphs which are restricted super line n sigraphs of index r.

Proposition 3.1. An n-sigraph $S_{n}=(G, \sigma)$ is a restricted super line n-sigraph of index r if and only if S_{n} is i-balanced n-sigraph and its underlying graph G is a restricted super line graph of index r.
Proof. Suppose that S_{n} is i-balanced and G is a $\mathcal{R} \mathcal{L}_{r}(G)$. Then there exists a graph H such that $\mathcal{L}_{r}(H) \cong G$. Since S_{n} is i-balanced, by Proposition 1.1, there exists an n-marking μ of G such that each edge $u v$ in S_{n} satisfies $\sigma(u v)=\mu(u) \mu(v)$. Now consider the n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$, where for any edge e in $H, \sigma^{\prime}(e)$ is the
n-marking of the corresponding vertex in G. Then clearly, $\mathcal{R} \mathcal{L}_{r}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence S_{n} is a restricted super line n-sigraph of index r.

Conversely, suppose that $S_{n}=(G, \sigma)$ is a restricted super line n-sigraph of index r. Then there exists an n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$ such that $\mathcal{R} \mathcal{L}_{r}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence G is the $\mathcal{R} \mathcal{L}_{r}(G)$ of H and by Proposition 2.1, S_{n} is i-balanced.

If we take $r=1$ in $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$, then this is the ordinary line n-sigraph. In [18], the authors obtained structural characterization of line n-sigraphs and clearly Proposition 3.1 is the generalization of line signed graphs.

Proposition 3.2. An n-sigraph $S_{n}=(G, \sigma)$ is a line n-sigraph if, and only if, S_{n} is i-balanced n-sigraph and its underlying graph G is a line graph.

4. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs (a sigraph) in the more general context of graphs with multiple signs on their edges. We look at two kinds of complementation: complementing some or all of the signs, and reversing the order of the signs on each edge.

For any $m \in H_{n}$, the m-complement of $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is: $a^{m}=a m$. For any $M \subseteq H_{n}$, and $m \in H_{n}$, the m-complement of M is $M^{m}=\left\{a^{m}: a \in M\right\}$.

For any $m \in H_{n}$, the m-complement of an n-sigraph $S_{n}=(G, \sigma)$, written $\left(S_{n}^{m}\right)$, is the same graph but with each edge label $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ replaced by a^{m}.

For an n-sigraph $S_{n}=(G, \sigma)$, the $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ is i-balanced (Proposition 2.1). We now examine, the condition under which m-complement of $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ is i-balanced, where for any $m \in H_{n}$.

Proposition 4.1. Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then, for any $m \in H_{n}$, if $\mathcal{R} \mathcal{L}_{r}(G)$ is bipartite then $\left(\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)\right)^{m}$ is i-balanced.
Proof. Since, by Proposition 2,1, $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ is i-balanced, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ whose $k^{\text {th }}$ co-ordinate are - is even. Also, since $\mathcal{R} \mathcal{L}_{r}(G)$ is bipartite, all cycles have even length; thus, for each k, $1 \leq k \leq n$, the number of n-tuples on any cycle C in $\mathcal{R} \mathcal{L}_{r}\left(S_{n}\right)$ whose $k^{\text {th }}$ co-ordinate are + is also even. This implies that the same thing is true in any m-complement, where for any $m, \in H_{n}$. Hence $\left(\mathcal{R}_{r}\left(S_{n}\right)\right)^{t}$ is i-balanced.

References

[1] K. S. Bagga, L. W. Beineke and B. N. Varma, Super line graphs, In: Y. Alavi, A. Schwenk (Eds.), Graph Theory, Combinatorics and Applications, vol. 1, WileyInterscience, New York, 1995, pp. 35-46.
[2] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
[3] V. Lokesha, P. S. K. Reddy and S. Vijay, The triangular line n-sigraph of a symmetric n-sigraph, Advn. Stud. Contemp. Math., 19(1)(2009), 123-129.
[4] K. Manjula, Some results on generalized line graphs, Ph.D. thesis, Bangalore University, Bangalore, 2004.
[5] E. Prisner, Graph Dynamics, Longman, London, 1995.
[6] R. Rangarajan and P. Siva Kota Reddy, Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2)(2008), 145-151.
[7] R. Rangarajan, P. S. K. Reddy and M. S. Subramanya, Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1)(2009), 79-85.
[8] R. Rangarajan, P. S. K.Reddy and N. D. Soner, Switching equivalence in symmetric n-sigraphs-II, J. Orissa Math. Sco., 28(1 \& 2)(2009), 1-12.
[9] P. S. K. Reddy and B. Prashanth, Switching equivalence in symmetric n-sigraphs-I, Advances and Applications in Discrete Mathematics, 4(1)(2009), 25-32.
[10] P. S. K. Reddy, S. Vijay and B. Prashanth, The edge C_{4} n-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. \& Engg. Appls., 3(2)(2009), 21-27.
[11] P. S. K. Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3)(2010), 305312.
[12] P. S. K. Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
[13] P. S. K. Reddy, V. Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. \& Engg. Appls., 5(1)(2011), 95-101.
[14] P. S. K. Reddy, M. C. Geetha and K. R. Rajanna, Switching equivalence in symmetric n-sigraphs-IV, Scientia Magna, 7 (3)(2011), 34-38.
[15] P. S. K. Reddy, M. C. Geetha and K. R. Rajanna, Switching equivalence in symmetric n-sigraphs- V, International J. Math. Combin., 3(2012), 58-63.
[16] P. S. K. Reddy, K. M. Nagaraja and M. C. Geetha, The Line n-sigraph of a symmetric n-sigraph-IV, International J. Math. Combin., $\mathbf{1}(2012)$, 106-112.
[17] E. Sampathkumar, P. S. K. Reddy, and M. S. Subramanya, Jump symmetric nsigraph, Proceedings of the Jangjeon Math. Soc., 11(1)(2008), 89-95.
[18] E. Sampathkumar, P. S. K. Reddy, and M. S. Subramanya, The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5)(2010), 953-958.

