KYUNGPOOK Math. J. 54(2014), 95-101 http://dx.doi.org/10.5666/KMJ.2014.54.1.95

The Line *n*-sigraph of a Symmetric *n*-sigraph-V

P. SIVA KOTA REDDY^{*}

Department of Mathematics, Siddaganga Institute of Technology, Tumkur-572 103, India.

e-mail: reddy_math@yahoo.com; pskreddy@sit.ac.in

K. M. NAGARAJA

Department of Mathematics, JSS Academy of Technical Education, Bangalore-560 060, India. e-mail: nagkmn@gmail.com

M. C. GEETHA Department of Mathematics, East West Institute of Technology, Bangalore-560 091, India.

e-mail: geethalingarajub@gmail.com

ABSTRACT. An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \leq k \leq n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \leq k \leq n\}$ be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n = (G, \sigma)$ $(S_n = (G, \mu))$, where G = (V, E) is a graph called the *underlying graph* of S_n and $\sigma: E \to H_n$ ($\mu: V \to H_n$) is a function. The restricted super line graph of index r of a graph G, denoted by $\mathcal{RL}_r(G)$. The vertices of $\mathcal{RL}_r(G)$ are the r-subsets of E(G)and two vertices $P = \{p_1, p_2, ..., p_r\}$ and $Q = \{q_1, q_2, ..., q_r\}$ are adjacent if there exists exactly one pair of edges, say p_i and q_j , where $1 \leq i, j \leq r$, that are adjacent edges in G. Analogously, one can define the restricted super line symmetric n-sigraph of index rof a symmetric *n*-sigraph $S_n = (G, \sigma)$ as a symmetric *n*-sigraph $\mathcal{RL}_r(S_n) = (\mathcal{RL}_r(G), \sigma')$, where $\mathcal{RL}_r(G)$ is the underlying graph of $\mathcal{RL}_r(S_n)$, where for any edge PQ in $\mathcal{RL}_r(S_n)$, $\sigma'(PQ) = \sigma(P)\sigma(Q)$. It is shown that for any symmetric *n*-sigraph S_n , its $\mathcal{RL}_r(S_n)$ is *i*-balanced and we offer a structural characterization of super line symmetric *n*-sigraphs of index r. Further, we characterize symmetric n-sigraphs S_n for which $\mathcal{RL}_r(S_n) \sim \mathcal{L}_r(S_n)$ and $\mathcal{RL}_r(S_n) \cong \mathcal{L}_r(S_n)$, where \sim and \cong denotes switching equivalence and isomorphism and $\mathcal{RL}_r(S_n)$ and $\mathcal{L}_r(S_n)$ are denotes the restricted super line symmetric *n*-sigraph of index r and super line symmetric n-sigraph of index r of S_n respectively.

^{*} Corresponding Author.

Received February 21, 2012; accepted May 8, 2013.

²⁰¹⁰ Mathematics Subject Classification: 05C22.

Key words and phrases: Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Restricted super line symmetric n-sigraphs, Super line symmetric n-sigraphs, Complementation.

⁹⁵

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [2]. We consider only finite, simple graphs free from self-loops.

Let $n \geq 1$ be an integer. An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \leq k \leq n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \leq k \leq n\}$ be the set of all symmetric *n*-tuples. Note that H_n is a group under coordinate wise multiplication, and the order of H_n is 2^m , where $m = \lceil \frac{n}{2} \rceil$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n = (G, \sigma)$ $(S_n = (G, \mu))$, where G = (V, E) is a graph called the *underlying graph* of S_n and $\sigma : E \to H_n$ $(\mu : V \to H_n)$ is a function.

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-tuple/symmetric n-sigraph/symmetric n-marked graph.

An *n*-tuple $(a_1, a_2, ..., a_n)$ is the *identity n*-tuple, if $a_k = +$, for $1 \le k \le n$, otherwise it is a *non-identity n*-tuple. In an *n*-sigraph $S_n = (G, \sigma)$ an edge labelled with the identity *n*-tuple is called an *identity edge*, otherwise it is a *non-identity edge*.

Further, in an *n*-sigraph $S_n = (G, \sigma)$, for any $A \subseteq E(G)$ the *n*-tuple $\sigma(A)$ is the product of the *n*-tuples on the edges of A.

In [17], the authors defined two notions of balance in *n*-sigraph $S_n = (G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [6]):

Definition 1.1. Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then,

(i) S_n is *identity balanced* (or *i-balanced*), if product of *n*-tuples on each cycle of S_n is the identity *n*-tuple, and

(ii) S_n is *balanced*, if every cycle in S_n contains an even number of non-identity edges.

Note: An *i*-balanced *n*-sigraph need not be balanced and conversely.

The following characterization of *i*-balanced n-sigraphs is obtained in [17].

Proposition 1.1. (E. Sampathkumar et al. [17])

An n-sigraph $S_n = (G, \sigma)$ is i-balanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge uv is equal to the product of the n-tuples of u and v.

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of S_n defined as follows: each vertex $v \in V$, $\mu(v)$ is the *n*-tuple which is the product of the *n*-tuples on the edges incident with v. Complement of S_n is an *n*-sigraph

 $\overline{S_n} = (\overline{G}, \sigma^c)$, where for any edge $e = uv \in \overline{G}$, $\sigma^c(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ as defined here is an *i*-balanced *n*-sigraph due to Proposition 1.1 [9].

In [17], the authors also have defined switching and cycle isomorphism of an *n*-sigraph $S_n = (G, \sigma)$ as follows: (See also [3, 7, 8] & [9]-[16])

Let $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$, be two *n*-sigraphs. Then S_n and S'_n are said to be *isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that if uv is an edge in S_n with label $(a_1, a_2, ..., a_n)$ then $\phi(u)\phi(v)$ is an edge in S'_n with label $(a_1, a_2, ..., a_n)$ then $\phi(u)\phi(v)$ is an edge in S'_n with label $(a_1, a_2, ..., a_n)$.

Given an *n*-marking μ of an *n*-sigraph $S_n = (G, \sigma)$, switching S_n with respect to μ is the operation of changing the *n*-tuple of every edge uv of S_n by $\mu(u)\sigma(uv)\mu(v)$. The *n*-sigraph obtained in this way is denoted by $\mathcal{S}_{\mu}(S_n)$ and is called the μ -switched *n*-sigraph or just switched *n*-sigraph.

Further, an *n*-sigraph S_n switches to *n*-sigraph S'_n (or that they are switching equivalent to each other), written as $S_n \sim S'_n$, whenever there exists an *n*-marking of S_n such that $\mathcal{S}_{\mu}(S_n) \cong S'_n$.

Two *n*-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ are said to be *cycle isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that the *n*-tuple $\sigma(C)$ of every cycle C in S_n equals to the *n*-tuple $\sigma(\phi(C))$ in S'_n . We make use of the following known result (see [17]).

Proposition 1.2.(E. Sampathkumar et al. [17])

Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

In this paper, we introduced the notion called restricted super line n-sigraph of index r and we obtained some interesting results in the following sections. The restricted super line n-sigraph of index r is the generalization of line n-sigraph.

2. Restricted Super Line *n*-sigraph $\mathcal{L}_r(S_n)$

In [4], K. Manjula introduced the concept of the restricted super line graph, which generalizes the notion of line graph. For a given G, its restricted super line graph $\mathcal{RL}_r(G)$ of index r is the graph whose vertices are the r-subsets of E(G), and two vertices $P = \{p_1, p_2, ..., p_r\}$ and $Q = \{q_1, q_2, ..., q_r\}$ are adjacent if there exists exactly one pair of edges, say p_i and q_j , where $1 \leq i, j \leq r$, that are adjacent edges in G. In [1], the authors introduced the concept of the super line graph as follows: For a given G, its super line graph $\mathcal{L}_r(G)$ of index r is the graph whose vertices are the r-subsets of E(G), and two vertices P and Q are adjacent if there exist $p \in P$ and $q \in Q$ such that p and q are adjacent edges in G. Clearly $\mathcal{RL}_r(G)$ is a spanning subgraph of $\mathcal{L}_r(G)$. From the definitions of $\mathcal{RL}_r(G)$ and $\mathcal{L}_r(G)$, it turns out that $\mathcal{RL}_1(G)$ and $\mathcal{L}_1(G)$ coincides with the line graph L(G).

In this paper, we extend the notion of $\mathcal{RL}_r(G)$ to realm of *n*-sigraphs as follows: The restricted super line *n*-sigraph of index *r* of an *n*-sigraph $S_n = (G, \sigma)$ as an *n*-sigraph $\mathcal{RL}_r(S_n) = (\mathcal{RL}_r(G), \sigma')$, where $\mathcal{RL}_r(G)$ is the underlying graph of $\mathcal{RL}_r(S_n)$, where for any edge PQ in $\mathcal{RL}_r(S_n)$, $\sigma'(PQ) = \sigma(P)\sigma(Q)$.

Hence, we shall call a given *n*-sigraph S_n is a restricted super line *n*-sigraph of index *r* if it is isomorphic to the restricted super line *n*-sigraph of index *r*, $\mathcal{RL}_r(S'_n)$ of some *n*-sigraph S'_n . In the following subsection, we shall present a characterization of restricted super line *n*-sigraph of index *r*.

The following result indicates the limitations of the notion $\mathcal{RL}_r(S_n)$ as introduced above, since the entire class of *i*-unbalanced *n*-sigraphs is forbidden to be restricted super line *n*-sigraphs of index *r*.

Proposition 2.1. For any n-sigraph $S_n = (G, \sigma)$, its $\mathcal{RL}_r(S_n)$ is i-balanced.

Proof. Let σ' denote the *n*-tuple of $\mathcal{RL}_r(S_n)$ and let the *n*-tuple σ of S_n be treated as an *n*-marking of the vertices of $\mathcal{RL}_r(S_n)$. Then by definition of $\mathcal{RL}_r(S_n)$ we see that $\sigma'(P,Q) = \sigma(P)\sigma(Q)$, for every edge PQ of $\mathcal{RL}_r(S_n)$ and hence, by Proposition 1.1, the result follows. \Box

For any positive integer k, the k^{th} iterated restricted super line *n*-sigraph of index $r, \mathcal{RL}_r(S_n)$ of S_n is defined as follows:

$$\mathcal{RL}_r^0(S_n) = S_n, \, \mathcal{RL}_r^k(S_n) = \mathcal{RL}_r(\mathcal{RL}_r^{k-1}(S_n))$$

Corollary 2.2. For any n-sigraph $S_n = (G, \sigma)$ and any positive integer k, $\Re \mathcal{L}_r^k(S_n)$ is *i*-balanced.

In [16], the authors introduced the notion of the super line n-sigraph, which generalizes the notion of line n-sigraph [18]. The super line n-sigraph of index r of an n-sigraph $S_n = (G, \sigma)$ as an n-sigraph $\mathcal{L}_r(S_n) = (\mathcal{L}_r(G), \sigma')$, where $\mathcal{L}_r(G)$ is the underlying graph of $\mathcal{L}_r(S_n)$, where for any edge PQ in $\mathcal{L}_r(S_n), \sigma'(PQ) = \sigma(P)\sigma(Q)$. The above notion restricted super line n-sigraph is another generalization of line n-sigraphs.

Proposition 2.3. (**P.S.K.Reddy et al.** [16]) For any n-sigraph $S_n = (G, \sigma)$, its $\mathcal{L}_r(S_n)$ is i-balanced.

In [4], the author characterized whose restricted super line graphs of index r that are isomorphic to $\mathcal{L}_r(G)$.

Proposition 2.4.(K. Manjula [4])

For a graph G = (V, E), $\mathcal{RL}_r(G) \cong \mathcal{L}_r(G)$ if, and only if, G is either $K_{1,2} \cup nK_2$ or nK_2 .

We now characterize *n*-sigraphs those $\mathcal{RL}_r(S_n)$ are switching equivalent to their $\mathcal{L}_r(S_n)$.

Proposition 2.5. For any n-sigraph $S_n = (G, \sigma)$, $\mathcal{RL}_r(S_n) \sim \mathcal{L}_r(S_n)$ if, and only if, G is either $K_{1,2} \cup nK_2$ or nK_2 .

Proof. Suppose $\mathcal{RL}_r(S_n) \sim \mathcal{L}_r(S_n)$. This implies, $\mathcal{RL}_r(G) \cong \mathcal{L}_r(G)$ and hence by Proposition 2.4, we see that the graph G must be isomorphic to either $K_{1,2} \cup nK_2$ or nK_2 .

Conversely, suppose that G is either $K_{1,2} \cup nK_2$ or nK_2 . Then $\mathcal{RL}_r(G) \cong \mathcal{L}_r(G)$ by Proposition 2.4. Now, if S_n any n-sigraph on any of these graphs, by Proposition 2.1 and Proposition 2.3, $\mathcal{RL}_r(S_n)$ and $\mathcal{L}_r(S_n)$ are *i*-balanced and hence, the result follows from Proposition 1.2.

We now characterize *n*-sigraphs those $\mathcal{RL}_r(S_n)$ are isomorphic to their $\mathcal{L}_r(S_n)$. The following result is a stronger form of the above result.

Proposition 2.6. For any n-sigraph $S_n = (G, \sigma)$, $\mathcal{RL}_r(S_n) \cong \mathcal{L}_r(S_n)$ if, and only if, G is either $K_{1,2} \cup nK_2$ or nK_2 .

Proof. Clearly $\mathcal{RL}_r(S_n) \cong \mathcal{L}_r(S_n)$, where G is either $K_{1,2} \cup nK_2$ or nK_2 . Consider the map $f: V(\mathcal{RL}_r(G)) \to V(\mathcal{L}_r(S))$ defined by $f(e_1e_2, e_2e_3) = (e'_1e'_2, e'_2e'_3)$ is an isomorphism. Let σ be any n-tuple on $K_{1,2} \cup nK_2$ or nK_2 . Let $e = (e_1e_2, e_2e_3)$ be an edge in $\mathcal{RL}_r(G)$, where G is $K_{1,2} \cup nK_2$ or nK_2 . Then the n-tuple of the edge e in $\mathcal{RL}_r(G)$ is the $\sigma(e_1e_2)\sigma(e_2e_3)$ which is the n-tuple of the edge $(e'_1e'_2, e'_2e'_3)$ in $\mathcal{L}_r(G)$, where G is $K_{1,2} \cup nK_2$ or nK_2 . Hence the map f is also an n-sigraph isomorphism between $\mathcal{RL}_r(S_n)$ and $\mathcal{L}_r(S_n)$.

3. Characterization of Restricted Super Line *n*-sigraphs $\mathcal{RL}_r(S_n)$

The following result characterize n-sigraphs which are restricted super line n-sigraphs of index r.

Proposition 3.1. An *n*-sigraph $S_n = (G, \sigma)$ is a restricted super line *n*-sigraph of index *r* if and only if S_n is *i*-balanced *n*-sigraph and its underlying graph *G* is a restricted super line graph of index *r*.

Proof. Suppose that S_n is *i*-balanced and G is a $\mathcal{RL}_r(G)$. Then there exists a graph H such that $\mathcal{L}_r(H) \cong G$. Since S_n is *i*-balanced, by Proposition 1.1, there exists an *n*-marking μ of G such that each edge uv in S_n satisfies $\sigma(uv) = \mu(u)\mu(v)$. Now consider the *n*-sigraph $S'_n = (H, \sigma')$, where for any edge e in H, $\sigma'(e)$ is the

n-marking of the corresponding vertex in *G*. Then clearly, $\mathcal{RL}_r(S'_n) \cong S_n$. Hence S_n is a restricted super line *n*-sigraph of index *r*.

Conversely, suppose that $S_n = (G, \sigma)$ is a restricted super line *n*-sigraph of index *r*. Then there exists an *n*-sigraph $S'_n = (H, \sigma')$ such that $\mathcal{RL}_r(S'_n) \cong S_n$. Hence *G* is the $\mathcal{RL}_r(G)$ of *H* and by Proposition 2.1, S_n is *i*-balanced. \Box

If we take r = 1 in $\mathcal{RL}_r(S_n)$, then this is the ordinary line *n*-sigraph. In [18], the authors obtained structural characterization of line *n*-sigraphs and clearly Proposition 3.1 is the generalization of line signed graphs.

Proposition 3.2. An *n*-sigraph $S_n = (G, \sigma)$ is a line *n*-sigraph if, and only if, S_n is *i*-balanced *n*-sigraph and its underlying graph G is a line graph.

4. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs (a *sigraph*) in the more general context of graphs with multiple signs on their edges. We look at two kinds of complementation: complementing some or all of the signs, and reversing the order of the signs on each edge.

For any $m \in H_n$, the *m*-complement of $a = (a_1, a_2, ..., a_n)$ is: $a^m = am$. For any $M \subseteq H_n$, and $m \in H_n$, the *m*-complement of M is $M^m = \{a^m : a \in M\}$.

For any $m \in H_n$, the *m*-complement of an *n*-sigraph $S_n = (G, \sigma)$, written (S_n^m) , is the same graph but with each edge label $a = (a_1, a_2, ..., a_n)$ replaced by a^m .

For an *n*-sigraph $S_n = (G, \sigma)$, the $\mathcal{RL}_r(S_n)$ is *i*-balanced (Proposition 2.1). We now examine, the condition under which *m*-complement of $\mathcal{RL}_r(S_n)$ is *i*-balanced, where for any $m \in H_n$.

Proposition 4.1. Let $S_n = (G, \sigma)$ be an n-sigraph. Then, for any $m \in H_n$, if $\mathcal{RL}_r(G)$ is bipartite then $(\mathcal{RL}_r(S_n))^m$ is i-balanced.

Proof. Since, by Proposition 2,1, $\mathcal{RL}_r(S_n)$ is *i*-balanced, for each $k, 1 \leq k \leq n$, the number of *n*-tuples on any cycle C in $\mathcal{RL}_r(S_n)$ whose k^{th} co-ordinate are - is even. Also, since $\mathcal{RL}_r(G)$ is bipartite, all cycles have even length; thus, for each k, $1 \leq k \leq n$, the number of *n*-tuples on any cycle C in $\mathcal{RL}_r(S_n)$ whose k^{th} co-ordinate are + is also even. This implies that the same thing is true in any *m*-complement, where for any $m, \in H_n$. Hence $(\mathcal{RL}_r(S_n))^t$ is *i*-balanced. \Box

References

- K. S. Bagga, L. W. Beineke and B. N. Varma, *Super line graphs*, In: Y. Alavi, A. Schwenk (Eds.), Graph Theory, Combinatorics and Applications, vol. 1, Wiley-Interscience, New York, 1995, pp. 35-46.
- [2] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
- [3] V. Lokesha, P. S. K. Reddy and S. Vijay, The triangular line n-sigraph of a symmetric n-sigraph, Advn. Stud. Contemp. Math., 19(1)(2009), 123-129.
- [4] K. Manjula, Some results on generalized line graphs, Ph.D. thesis, Bangalore University, Bangalore, 2004.
- [5] E. Prisner, Graph Dynamics, Longman, London, 1995.
- [6] R. Rangarajan and P. Siva Kota Reddy, Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2)(2008), 145-151.
- [7] R. Rangarajan, P. S. K. Reddy and M. S. Subramanya, Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1)(2009), 79-85.
- [8] R. Rangarajan, P. S. K.Reddy and N. D. Soner, Switching equivalence in symmetric n-sigraphs-II, J. Orissa Math. Sco., 28(1 & 2)(2009), 1-12.
- [9] P. S. K. Reddy and B. Prashanth, Switching equivalence in symmetric n-sigraphs-I, Advances and Applications in Discrete Mathematics, 4(1)(2009), 25-32.
- [10] P. S. K. Reddy, S. Vijay and B. Prashanth, The edge C₄ n-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. & Engg. Appls., 3(2)(2009), 21-27.
- [11] P. S. K. Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3)(2010), 305-312.
- [12] P. S. K. Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5)(2010), 172-178.
- [13] P. S. K. Reddy, V. Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. & Engg. Appls., 5(1)(2011), 95-101.
- [14] P. S. K. Reddy, M. C. Geetha and K. R. Rajanna, Switching equivalence in symmetric n-sigraphs-IV, Scientia Magna, 7(3)(2011), 34-38.
- [15] P. S. K. Reddy, M. C. Geetha and K. R. Rajanna, Switching equivalence in symmetric n-sigraphs-V, International J. Math. Combin., 3(2012), 58-63.
- [16] P. S. K. Reddy, K. M. Nagaraja and M. C. Geetha, The Line n-sigraph of a symmetric n-sigraph-IV, International J. Math. Combin., 1(2012), 106-112.
- [17] E. Sampathkumar, P. S. K. Reddy, and M. S. Subramanya, Jump symmetric nsigraph, Proceedings of the Jangjeon Math. Soc., 11(1)(2008), 89-95.
- [18] E. Sampathkumar, P. S. K. Reddy, and M. S. Subramanya, The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5)(2010), 953-958.