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Abstract. The sequence spaces cF (M), cF0 (M) and ℓF (M) of fuzzy real numbers with

fuzzy metric are introduced. Some properties of these sequence spaces like solidness, sym-

metricity, convergence-free etc. are studied. We obtain some inclusion relations involving

these sequence spaces.

1. Introduction

The concept of fuzzy set theory was introduced by L.A. Zadeh in the year 1965.
Later on different classes of sequences of fuzzy numbers have been investigated by
Yu-ru [15], Tripathy and Baruah ([5], [6]), Tripathy and Borgohain [4], Tripathy
and Dutta ([8], [9]), Tripathy and Sarma ([16],[17],[18]) and many others.

An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous, non-
decreasing and convex with M(0) = 0,M(x) > 0, for x > 0 and M(x) → ∞, as
x → ∞.

If the convexity of the Orlicz function is replaced by M(x+ y) ≤ M(x)+M(y),
then this function is called as modulus function.

Remark 1.1. An Orlicz function satisfies the inequality M(λx) ≤ λM(x) for all λ
with 0 < λ < 1.

Throughout the article wF , ℓF , ℓF∞, represent the classes of all, absolutely
summable and bounded sequences fuzzy real numbers respectively.

* Corresponding Author.
Received September 24, 2010; accepted December 14, 2012.
2010 Mathematics Subject Classification: 40A05, 40A25, 40A30, 40C05.
Key words and phrases: Orlicz function, symmetric space, solid space, convergence free,
metric space, completenes.

11



12 B. C. Tripathy and S. Borgohain

2. Definitions and Background

A fuzzy real number X is a fuzzy set on R i.e. a mapping X : R → I(= [0, 1])
associating each real number t with its grade of membership X(t).

A fuzzy real numberX is called convex ifX(t) ≥ X(s)∧X(r) = min(X(s), X(r)),
where s < t < r. If there exists t0 ∈ R such thatX(t0) = 1, then the fuzzy real num-
ber X is called normal. A fuzzy real number X is said to be upper semi-continuous
if for each ε > 0, X−1([0, a+ ε)), for all a ∈ I is open in the usual topology of R.

The class of all upper semi-continuous, normal, convex fuzzy real numbers is
denoted by R(I). For X ∈ R(I), the α-level set Xα, for 0 < α ≤ 1 is defined by,
Xα = {t ∈ R : X(t) ≥ α}. The 0-level i.e. X0 is the closure of strong 0-cut, i.e.
{t ∈ R : X(t) > 0}.

The absolute value of X ∈ R(I) is defined by,

|X|(t) =
{

max{X(t), X(−t)}, for t ≥ 0
0 otherwise

For r ∈ R and r ∈ R(I) is defined as,

r(t) =

{
1 if t = r
0 if t ̸= r

The additive and multiplicative identities of R(I) are denoted by 0 and 1.
Let D be the set of all closed bounded intervals X = [XL, XR].
Define d : D×D → R by d(X,Y ) = max{|XL−Y L|, |XR−Y R|}. Then clearly

(D, d) is a complete metric space.
Define d : R(I)×R(I) → R by d(X,Y ) = sup

0<α≤1
d(Xα, Y α), for X,Y ∈ R(I).

Then it is well known that (R(I), d) is a complete metric space.
A sequence X = (Xk) of fuzzy real numbers is said to converge to the fuzzy

number X0, if for every ε > 0, there exists k0 ∈ N such that, d(Xk, X0) < ε for all
k ≥ k0.

A sequence space E is said to be solid if (Yn) ∈ E, whenever (Xn) ∈ E and
|Yn| ≤ |Xn|, for all n ∈ N .

Let X = (Xn) be a sequence, then S(X) denotes the set of all permutations of
the elements of (Xn) i.e. S(X) = {(Xπ(n)) : π is a permutation of N}.

A sequence space E is said to be symmetric if S(X) ⊂ E for all X ∈ E.
A sequence space E is said to be convergence-free if (Yn) ∈ E whenever (Xn) ∈

E and Xn = 0 implies Yn = 0.
A sequence space E is said to be monotone if E contains the canonical pre-

images of all its step spaces.

Lemma 2.1. A sequence space E is solid implies that E is monotone.

Lindenstrauss and Tzafriri [13] used the notion of Orlicz function and introduced
the sequence space:
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ℓM =

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
, for some ρ > 0

}

The space ℓM with the norm,

∥x∥ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
,

becomes a Banach space, which is called an Orlicz sequence space. The space ℓM is
closely related to the space ℓp, which is an Orlicz sequence space with M(x) = xp,
for 1 ≤ p ≤ ∞.

In the later stage different classes of Orlicz sequence spaces were introduced
and studied by Altin, Et and Tripathy [2], Tripathy, Altin and Et [3], Tripathy and
Mahanta [14], Tripathy and Sarma ([16], [17],[18]) and many others.

Let dF : R(I) × R(I) → R(I) be the fuzzy metric. Let the mappings L, T :
[0, 1] × [0, 1] → [0, 1] be symmetric, non-decreasing in both arguments and satisfy,
L[0, 0] = 0 and M [1, 1] = 1. We consider L = min{p, q} and T = max{p, q}, where
p, q ∈ [0, 1], for our investigations in this article.

Let λ : R(I) × R(I) → R be such that λ(X,Y ) = sup
0<α≤1

λα(X
α, Y α), where

λα : R×R → R and λα(X
α, Y α) = min{|Xα

1 − Y α
1 |, |Xα

2 − Y α
2 |}.

Similarly, let ρ : R(I) × R(I) → R be such that ρ(X,Y ) = sup
0<α≤1

ρα(X
α, Y α),

where ρα : R×R → R and ρα(X
α, Y α) = max{|Xα

1 − Y α
1 |, |Xα

2 − Y α
2 |}.

Since the distance between two fuzzy numbers is again a fuzzy number, so the
α- level set of this distance dF between the fuzzy real numbers X and Y is denoted
by,

[d(X,Y )]α = [λα(X
α, Y α), ρα(X

α, Y α)], 0 < α ≤ 1.

The quadruple (R(I), dF , L, T ) is called a fuzzy metric space and dF is a fuzzy
metric, if,

1. dF (X,Y ) = 0 if and only if X = Y.

2. dF (X,Y ) = dF (Y,X), for all X,Y ∈ R(I).

3. For all X,Y, Z ∈ R(I),

• dF (X,Y )(s+t) ≥ L(dF (X,Z)(s), dF (Z, Y )(t)), whenever s ≤ λ1(X,Z),
t ≤ λ1(Z, Y ) and s+ t ≤ λ1(X,Y ).

• dF (X,Y )(s+t) ≤ T (dF (X,Z)(s), dF (Z, Y )(t)), whenever s ≥ λ1(X,Z),
t ≥ λ1(Z, Y ) and s+ t ≥ λ1(X,Y ).



14 B. C. Tripathy and S. Borgohain

Using the concept of Orlicz function and fuzzy metric, we introduce the following
sequence spaces,

ℓF∞(M) =

{
(Xk) ∈ wF : sup

k
M

(
λ(Xk, 0)

r

)
< ∞ and sup

k
M

(
ρ(Xk, 0)

r

)
< ∞,

for some r > 0

}

cF (M) =

{
(Xk) ∈ wF : M

(
λ(Xk, L)

r

)
→ 0 and M

(
ρ(Xk, L)

r

)
→ 0, as k → ∞,

for some r > 0, L ∈ R(I)

}

cF0 (M) =

{
(Xk) ∈ wF : M

(
λ(Xk, 0)

r

)
→ 0 and M

(
ρ(Xk, 0)

r

)
→ 0, as k → ∞,

for some r > 0

}

3. Main Results

Theorem 3.1. The classes of sequences Z(M), where Z = ℓF∞, cF , cF0 , are metric
spaces by the metric defined by,

d(X,Y )M = inf

{
r > 0 : sup

k
M

(
λ(Xk, Yk)

r

)
≤ 1 and sup

k
M

(
ρ(Xk, Yk)

r

)
≤ 1

}
for X,Y ∈ Z(M), where Z = ℓF∞, cF , cF0 .

Proof. Consider the sequence space ℓF∞(M). We have to show that ℓF∞(M) is a
metric space.

For X,Y ∈ ℓF∞(M), we have,
(i) d(X,Y )M = 0. This implies that,

λ(Xk, Yk) = 0 and ρ(Xk, Yk) = 0, for all k ∈ N.( Since M(0) = 0).

Which implies that, for all α ∈ (0, 1],

λ(Xk, Yk) = sup
0<α≤1

λα(X
α
k , Y

α
k ) = 0 ⇒ λα(X

α
k , Y

α
k ) = 0, for all α ∈ (0, 1].

(3.1) ⇒ min{|Xα
k1 − Y α

k1|, |Xα
k2 − Y α

k2|} = 0, for all α ∈ (0, 1].

Similarly, we get that, for all α ∈ (0, 1],

ρ(Xk, Yk) = sup
0<α≤1

ρα(X
α
k , Y

α
k ) = 0 ⇒ ρα(X

α
k , Y

α
k ) = 0, for all α ∈ (0, 1].
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(3.2) ⇒ max{|Xα
k1 − Y α

k1|, |Xα
k2 − Y α

k2|} = 0, for all α ∈ (0, 1].

From (3.1) and (3.2), it follows that, for all k ∈ N,Xk = Yk ⇒ X = Y.
Conversely, assume that, X = Y .
Then, using the defintion of λ and ρ, we get,

λα(X
α
k , Y

α
k ) = 0 and ρα(X

α
k , Y

α
k ) = 0, for all k ∈ N,α ∈ (0, 1].

Which implies that,

sup
0<α≤1

λα(X
α
k , Y

α
k ) = 0 and sup

0<α≤1
ρα(X

α
k , Y

α
k ) = 0, for all k ∈ N.

It follows that, λ(Xk, Yk) = 0 and ρ(Xk, Yk) = 0.
Using the continuity of M , we get, d(X,Y )M = 0.

Which shows that, d(X,Y )M = 0 if and only if X = Y .

(ii) d(X,Y )M

= inf

{
r > 0 : sup

k
M

(
λ(Xk, Yk)

r

)
≤ 1; sup

k
M

(
ρ(Xk, Yk)

r

)
≤ 1

}
.

From the defintion of λ, it follows that,

λ(Xk, Yk) = sup
0<α≤1

λα(X
α
k , Y

α
k )

= sup
0<α≤1

[min{|Xα
k1, Y

α
k1|, |Xα

k2, Y
α
k2|}]

= sup
0<α≤1

[min{|Y α
k1, X

α
k1|, |Y α

k2, X
α
k2|}]

= sup
0<α≤1

λα(Y
α
k , Xα

k )

= λ(Yk, Xk).

Proceeding in the same way, we get, ρ(Xk, Yk) = ρ(Yk, Xk).
Thus we get,

d(X,Y )M = inf

{
r > 0 : sup

k
M

(
λ(Xk, Yk)

r

)
≤ 1; sup

k
M

(
ρ(Xk, Yk)

r

)
≤ 1

}
= inf

{
r > 0 : sup

k
M

(
λ(Yk, Xk)

r

)
≤ 1; sup

k
M

(
ρ(Yk, Xk)

r

)
≤ 1

}
= d(Y,X)M .

Hence, d(X,Y )M = d(Y,X)M .

(iii) Let r1 > 0, r2 > 0 such that,

sup
k

M

(
λ(Xk, Zk)

r1

)
≤ 1.
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sup
k

M

(
λ(Zk, Yk)

r2

)
≤ 1.

Let r = r1 + r2. Following the definition of λ, we get,

λ(Xk, Yk) = sup
0<α≤1

λα(X
α
k , Y

α
k ) where λα(X

α, Y α)

= min{|Xα
1 − Y α

1 |, |Xα
2 − Y α

2 |}.

Following the defintion of λ, we get,

λα(X
α, Y α) ≤ λα(X

α, Zα) + λα(Z
α, Y α), for all α ∈ (0, 1].

Taking the supremum throughout α, we get,

sup
0<α≤1

λα(X
α
k , Y

α
k ) ≤ sup

0<α≤1
λα(X

α
k , Z

α
k ) + sup

0<α≤1
λα(Z

α
k , Y

α
k ).

which implies that, λ(Xk, Yk) ≤ λ(Xk, Zk) + λ(Zk, Yk)

Using the continuity of M , we get,

sup
k

M

(
λ(Xk, Yk)

r

)
≤ sup

k
M

(
λ(Xk, Zk)

r1 + r2
+

λ(Zk, Yk)

r1 + r2

)
≤ sup

k
M

(
r1

r1 + r2

(
λ(Xk, Zk)

r1

)
+

r2
r1 + r2

(
λ(Zk, Yk)

r2

))
≤ sup

k

(
r1

r1 + r2

)
M

(
λ(Xk, Zk)

r1

)
+ sup

k

(
r1

r1 + r2

)
M

(
λ(Zk, Yk)

r2

)
≤ 1.

Since r’s are non-negative, so taking the infimum of such r’s, we get,

inf

{
r > 0 : sup

k
M

(
λ(Xk, Yk)

r

)
≤ 1

}
≤ inf

{
r1 > 0 : sup

k
M

(
λ(Xk, Zk)

r1

)
≤ 1

}
+ inf

{
r2 > 0 : sup

k
M

(
λ(Zk, Yk)

r2

)
≤ 1

}
Proceeding in the same way, we get,

inf

{
r > 0 : sup

k
M

(
ρ(Xk, Yk)

r

)
≤ 1

}
≤ inf

{
r1 > 0 : sup

k
M

(
ρ(Xk, Zk)

r1

)
≤ 1

}
+ inf

{
r2 > 0 : sup

k
M

(
ρ(Zk, Yk)

r2

)
≤ 1

}
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Thus we have,

inf

{
r > 0 : sup

k
M

(
λ(Xk, Yk)

r

)
≤ 1; sup

k
M

(
ρ(Xk, Yk)

r

)
≤ 1

}
≤ inf

{
r1 > 0 : sup

k
M

(
λ(Xk, Zk)

r1

)
≤ 1; sup

k
M

(
ρ(Xk, Zk)

r1

)
≤ 1

}
+ inf

{
r2 > 0 : sup

k
M

(
λ(Zk, Yk)

r2

)
≤ 1; sup

k
M

(
ρ(Zk, Yk)

r2

)
≤ 1

}
⇒ d(X,Y )M ≤ d(X,Z)M + d(Z, Y )M .

This proves that ℓF∞(M) is a metric space.
This completes the proof. 2

Similarly, it can be proved that Z(M), where Z = cF and cF0 are metric spaces
with the same metric using the above technique.

Theorem 3.2. The classes of sequences Z(M), where Z = ℓF∞, cF , cF0 , is a complete
metric space with the metric defined by,

d(X,Y )M = inf

{
r > 0 : sup

k
M

(
λ(Xk, Yk)

r

)
≤ 1; sup

k
M

(
ρ(Xk, Yk)

r

)
≤ 1

}
,

for X,Y ∈ Z(M), where Z = ℓF∞, cF , cF0 .

Proof. Consider the sequence space ℓF∞(M).

Let (X(i)) be a Cauchy sequence in ℓF∞(M) such that, X(i) = (X
(i)
n )∞n=1.

Let ε > 0 be given. For a fixed x0 > 0, choose p > 0 such that M
(
px0

2

)
≥ 1.

Then there exists a positive integer n0 = n0(ε) such that,

d(X(i), X(j))M <
ε

px0
, for all i, j ≥ n0.

By the definition of dM , we get

(3.3) inf

{
r > 0 : sup

k
M(

λ(X
(i)
k , X

(j)
k )

r
) ≤ 1; sup

k
M(

ρ(X
(i)
k , X

(j)
k )

r
) ≤ 1

}
< ε,

for all i, j ≥ n0.

Which implies that,

(3.4) sup
k

M

(
λ(X

(i)
k , X

(j)
k )

r

)
≤ 1

(3.5) sup
k

M

(
ρ(X

(i)
k , X

(j)
k )

r

)
≤ 1
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From (3.4) we get,

sup
k

M

(
λ(X

(i)
k , X

(j)
k )

r

)
≤ 1

⇒ M

(
λ(X

(i)
k , X

(j)
k )

d(X(i), X(j))

)
≤ 1 ≤ M

(px0

2

)
.

Using the continuity of M , we get,

λ(X
(i)
k , X

(j)
k ) ≤ px0

2
.
ε

px0
=

ε

2
,

i.e (X
(i)
k ) is a Cauchy sequence of R(I). Since R(I) is complete, so it follows that,

(X
(i)
k ) is also convergent.

Let, lim
i

X
(i)
k = Xk, for each k ∈ N.

We have to establish that,

lim
i

X(i) = X and X ∈ ℓF∞(M).

Since M is continuous, so on taking j → ∞ and fixing i, we get from (3.4);

sup
k

M

(
λ(X

(i)
k , Xk)

r

)
≤ 1, for some r > 0 and i ≥ n0.

Proceeding in the same way, we get from (3.5):

sup
k

M

(
ρ(X

(i)
k , Xk)

r

)
≤ 1, for some r > 0 and i ≥ n0.

Now on taking the infimum of such r’s together, we get from (3.3):

inf

{
r > 0 : sup

k
M

(
λ(X

(i)
k , Xk)

r

)
≤ 1; sup

k
M

(
ρ(X

(i)
k , Xk)

r

)
≤ 1

}
< ε,

for some i ≥ n0.
Which shows that, d(X(i), X)M < ε, for all i ≥ n0.
i.e. lim

i
X(i) = X.

Now, it is to show that X ∈ ℓF∞(M).
We know that,

d(X, θ)M ≤ d(X,X(i))M + d(X(i), θ)M

< ε+M, for all i ≥ n0(ε).

i.e. d(X, θ)M is finite.
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Which implies that X ∈ ℓF∞(M).
Hence ℓF∞(M) is a complete metric space.
Similarly it can be established that the other classes of sequences are complete

metric spaces.
This completes the proof of the theorem. 2

Theorem 3.3. The classes of sequences Z(M), where Z = ℓF∞ and cF0 , are solid
whereas cF (M) is not solid.

Proof. Let (Xk) ∈ ℓF∞(M). Then we have, for some r > 0,

sup
k

M

(
λ(Xk, 0)

r

)
< ∞; sup

k
M

(
ρ(Xk, 0)

r

)
< ∞.

Let (Yk) be a sequence of fuzzy numbers with,

[d(Yk, 0)]α = [λα(Y
α
k , 0), ρα(Y

α
k , 0)], for 0 < α ≤ 1,

Such that,λ(Yk, 0) ≤ λ(Xk, 0) and ρ(Yk, 0) ≤ ρ(Xk, 0).
Since M is non-decreasing continuous function, so we get, for some r > 0,

M

(
λ(Yk, 0)

r

)
≤ M

(
λ(Xk, 0)

r

)
and M

(
ρ(Yk, 0)

r

)
≤ M

(
ρ(Xk, 0)

r

)
,

which implies that,

sup
k

M

(
λ(Yk, 0)

r

)
≤ sup

k
M

(
λ(Xk, 0)

r

)
< ∞, for some r > 0.

sup
k

M

(
ρ(Yk, 0)

r

)
≤ sup

k
M

(
ρ(Xk, 0)

r

)
< ∞, for some r > 0.

Which implies that,

sup
k

M

(
λ(Yk, 0)

r

)
< ∞, for some r > 0.

sup
k

M

(
ρ(Yk, 0)

r

)
< ∞, for some r > 0.

Which shows that, (Yk) ∈ ℓF∞(M).
Hence, ℓF∞(M) is solid.
Similarly we can establish that the class of sequences cF0 (M) is solid.

Proof of the second part follows from the following example.

Example 3.1. Let,

Xk(t) =

 1 + t, for t ∈ [−1, 0]
1− t, for t ∈ [0, 1]
0 otherwise
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Then, (Xk) ∈ cF (M).
Now, let

Yk(t) =

 1 + 3t, for t ∈ [−3−1, 0], all k odd
1− 3t, for t ∈ [0, 3−1], all k even
0 otherwise

Such that, using the continuity of M ,

sup
k

M

(
λ(Yk, 0

r

)
≤ sup

k
M

(
λ(Xk, 0

r

)
, for somer > 0.

sup
k

M

(
ρ(Yk, 0

r

)
≤ sup

k
M

(
ρ(Xk, 0

r

)
, for somer > 0.

But, (Yk) is not convergent.
Hence cF (M) is not solid. 2

Theorem 3.4. The classes of sequences Z(M), where Z = ℓF∞, cF (M) and cF0 are
symmetric.

Proof. Let (Xk) ∈ ℓF∞(M) and (Yk) be a rearrangement of (Xk), such that,

Xk = Ymk
, for each k ∈ N.

Then, we have, λ(Xk, 0) = λ(Ymk
, 0) and ρ(Xk, 0) = ρ(Ymk

, 0).
Using the continuity of M , we get,

sup
k

M

(
λ(Xk, 0)

r

)
= sup

k
M

(
λ(Ymk

, 0)

r

)
, for some r > 0.

sup
k

M

(
ρ(Xk, 0)

r

)
= sup

k
M

(
ρ(Ymk

, 0)

r

)
, for some r > 0.

which implies that,

sup
k

M

(
λ(Ymk

, 0)

r

)
< ∞ and sup

k
M

(
ρ(Ymk

, 0)

r

)
< ∞, for some r > 0.

Which shows that, (Yk) ∈ ℓF∞(M).
Hence ℓF∞(M) is symmetric.
This completes the proof.
Proof is similar for the cases also. 2

Proposition 3.5 The classes of sequences Z(M), where Z = ℓF∞, cF (M) and cF0
are not convergence-free.

Proof. The result follows from the following example.
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Example 3.2. Consider the sequence (Xk) defined as follows:

Xk(t) =

 1 + kt, for t ∈ [−k−1, 0]
1− kt, for t ∈ [0, k−1]
0 otherwise

Then we have, for some r > 0,

sup
k

M

(
λ(Xk, 0)

r

)
< ∞

and

sup
k

M

(
ρ(Xk, 0)

r

)
< ∞

Which shows that, (Xk) ∈ ℓF∞(M).
Now, let us consider the sequence (Yk) such that,

Yk(t) =

 1 + tk−2, for t ∈ [−k2, 0]
1− tk−2, for t ∈ [0, k2]
0 otherwise

Clearly we have, sup
k

M

(
λ(Xk, 0)

r

)
= ∞ and sup

k
M

(
ρ(Xk, 0)

r

)
= ∞

Thus, (Yk) /∈ ℓF∞(M).
Thus ℓF∞(M) is not convergence-free.
From the above example it follows that the classes of sequences and cF0 (M) are

not convergence free.
This completes the proof. 2
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