References
-
Agrawal, T., Sadaf, S., and Hasan, G. (2013). A genetic RNAi screen for IP3/
$Ca^{2+}$ coupled GPCRs in Drosophila identifies the PdfR as a regulator of insect flight. PLoS Genet. 9, e1003849. https://doi.org/10.1371/journal.pgen.1003849 - Berger, R.J., and Phillips, N.H. (1995). Energy-conservation and sleep. Behav. Brain Res. 69, 65-73. https://doi.org/10.1016/0166-4328(95)00002-B
- Besedovsky, L., Lange, T., and Born, J. (2012). Sleep and immune function. Pflug. Arch. Eur. J. Phy. 463, 121-137. https://doi.org/10.1007/s00424-011-1044-0
- Broeck, J.V. (2001). Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides 22, 241-254. https://doi.org/10.1016/S0196-9781(00)00376-4
- Cirelli, C. (2009). The genetic and molecular regulation of sleep: from fruit flies to humans. Nat. Rev. Neurosci. 10, 549-560. https://doi.org/10.1038/nrn2683
- Crocker, A., and Sehgal, A. (2008). Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms. J. Neurosci. 28, 9377-9385. https://doi.org/10.1523/JNEUROSCI.3072-08a.2008
- Crocker, A., and Sehgal, A. (2010). Genetic analysis of sleep. Genes Dev. 24, 1220-1235. https://doi.org/10.1101/gad.1913110
- Crocker, A., Shahidullah, M., Levitan, I.B., and Sehgal, A. (2010). Identification of a neural circuit that underlies the effects of octopamine on sleep: wake behavior. Neuron 65, 670-681. https://doi.org/10.1016/j.neuron.2010.01.032
- Dworak, M., McCarley, R.W., Kim, T., Kalinchuk, A.V., and Basheer, R. (2010). Sleep and brain energy levels: ATP changes during sleep. J. Neurosci. 30, 9007-9016. https://doi.org/10.1523/JNEUROSCI.1423-10.2010
- Foltenyi, K., Greenspan, R.J., and Newport, J.W. (2007). Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat. Neurosci. 10, 1160-1167. https://doi.org/10.1038/nn1957
- Groth, A.C., Fish, M., Nusse, R., and Calos, M.P. (2004). Construction of transgenic Drosophila by using the site-specific integrase from phage phi C31. Genetics 166, 1775-1782. https://doi.org/10.1534/genetics.166.4.1775
- Gwack, Y., Sharma, S., Nardone, J., Tanasa, B., Iuga, A., Srikanth, S., Okamura, H., Bolton, D., Feske, S., Hogan, P.G., et al. (2006). A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441, 646-650. https://doi.org/10.1038/nature04631
- Hendricks, J.C., Finn, S.M., Panckeri, K.A., Chavkin, J., Williams, J.A., Sehgal, A., and Pack, A.I. (2000). Rest in Drosophila is a sleep-like state. Neuron 25, 129-138. https://doi.org/10.1016/S0896-6273(00)80877-6
- Janssen, I., Schoofs, L., Spittaels, K., Neven, H., VandenBroeck, J., Devreese, B., VanBeeumen, J., Shabanowitz, J., Hunt, D.F., and DeLoof, A. (1996). Isolation of NEB-LFamide, a novel myotropic neuropeptide from the grey fleshfly. Mol. Cell. Endocrinol. 117, 157-165. https://doi.org/10.1016/0303-7207(95)03746-2
- Joiner, W.J., Crocker, A., White, B.H., and Sehgal, A. (2006). Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441, 757-760. https://doi.org/10.1038/nature04811
- Jorgensen, L.M., Hauser, F., Cazzamali, G., Williamson, M., and Grimmelikhuijzen, C.J. (2006). Molecular identification of the first SIFamide receptor. Biochem. Biophys. Res. Commun. 340, 696-701. https://doi.org/10.1016/j.bbrc.2005.12.062
- Kahsai, L., and Winther, A.M. (2011). Chemical neuroanatomy of the Drosophila central complex: distribution of multiple neuropeptides in relation to neurotransmitters. J. Comp. Neurol. 519, 290-315. https://doi.org/10.1002/cne.22520
- Keene, A.C., Duboue, E.R., McDonald, D.M., Dus, M., Suh, G.S.B., Waddell, S., and Blau, J. (2010). Clock and cycle limit starvationinduced sleep loss in Drosophila. Curr. Biol. 20, 1209-1215. https://doi.org/10.1016/j.cub.2010.05.029
- Liu, Q.L., Liu, S., Kodama, L., Driscoll, M.R., and Wu, M.N. (2012). Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr. Biol. 22, 2114-2123. https://doi.org/10.1016/j.cub.2012.09.008
- Macfadye, U.M., Oswald, I., and Lewis, S.A. (1973). Starvation and human slow-wave sleep. J. Appl. Physiol. 35, 391-394. https://doi.org/10.1152/jappl.1973.35.3.391
- Mignot, E. (2008). Why we sleep: the temporal organization of recovery. PLoS Biol. 6, e106. https://doi.org/10.1371/journal.pbio.0060106
- Mignot, E., Taheri, S., and Nishino, S. (2002). Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat. Neurosci. 5, 1071-1075. https://doi.org/10.1038/nn944
- Neely, G.G., Hess, A., Costigan, M., Keene, A.C., Goulas, S., Langeslag, M., Griffin, R.S., Belfer, I., Dai, F., Smith, S.B., et al. (2010). A genome-wide Drosophila screen for heat nociception identifies alpha 2 delta 3 as an evolutionarily conserved pain gene. Cell 143, 628-638. https://doi.org/10.1016/j.cell.2010.09.047
- Paik, D., Jang, Y.G., Lee, Y.E., Lee, Y.N., Yamamoto, R., Gee, H.Y., Yoo, S., Bae, E., Min, K.J., Tatar, M., et al. (2012). Misexpression screen delineates novel genes controlling Drosophila lifespan. Mech. Ageing Dev. 133, 234-245. https://doi.org/10.1016/j.mad.2012.02.001
- Parisky, K.M., Agosto, J., Pulver, S.R., Shang, Y.H., Kuklin, E., Hodge, J.J.L., Kang, K., Liu, X., Garrity, P.A., Rosbash, M., et al. (2009). PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit (vol. 60, pg. 672-682, 2008). Neuron 61, 152.
- Pitman, J.L., McGill, J.J., Keegan, K.P., and Allada, R. (2006). A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441, 753-756. https://doi.org/10.1038/nature04739
- Rechtschaffen, A., and Bergmann, B.M. (2002). Sleep deprivation in the rat: An update of the 1989 paper. Sleep 25, 18-24. https://doi.org/10.1093/sleep/25.1.18
- Roeder, T. (1999). Octopamine in invertebrates. Prog. Neurobiol. 59, 533-561. https://doi.org/10.1016/S0301-0082(99)00016-7
- Selbie, L.A., and Hill, S.J. (1998). G protein-coupled-receptor crosstalk: the fine-tuning of multiple receptor-signalling pathways. Trends Pharmacol. Sci. 19, 87-93. https://doi.org/10.1016/S0165-6147(97)01166-8
- Shang, Y.H., Donelson, N.C., Vecsey, C.G., Guo, F., Rosbash, M., and Griffith, L.C. (2013). Short neuropeptide F is a sleep-promoting inhibitory modulator. Neuron 80, 171-183. https://doi.org/10.1016/j.neuron.2013.07.029
- Shaw, P.J., Cirelli, C., Greenspan, R.J., and Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834-1837. https://doi.org/10.1126/science.287.5459.1834
- Smith, T.A.D. (2001). Type A gamma-aminobutyric acid (GABA(A)) receptor subunits and benzodiazepine binding: significance to clinical syndromes and their treatment. Br. J. Biomed. Sci. 58, 111-121.
- Southall, T.D., Elliott, D.A., and Brand, A.H. (2008). The GAL4 system: a versatile toolkit for gene expression in Drosophila. CSH Protoc. 2008, pdb.top49.
- Terhzaz, S., Rosay, P., Goodwin, S.F., and Veenstra, J.A. (2007). The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem. Biophys. Res. Commun. 352, 305-310. https://doi.org/10.1016/j.bbrc.2006.11.030
- Tononi, G., and Cirelli, C. (2014). Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12-34. https://doi.org/10.1016/j.neuron.2013.12.025
- Verleyen, P., Huybrechts, J., Baggerman, G., Van Lommel, A., De Loof, A., and Schoofs, L. (2004). SIFamide is a highly conserved neuropeptide: a comparative study in different insect species. Biochem. Biophys. Res. Commun. 320, 334-341. https://doi.org/10.1016/j.bbrc.2004.05.173
- Wisor, J.P., Nishino, S., Sora, I., Uhl, G.H., Mignot, E., and Edgar, D.M. (2001). Dopaminergic role in stimulant-induced wakefulness. J. Neurosci. 21, 1787-1794.
Cited by
- Control of sleep by a network of cell cycle genes vol.9, pp.4, 2015, https://doi.org/10.1080/19336934.2016.1153776
- Mechanisms of sleep plasticity due to sexual experience in Drosophila melanogaster vol.180, 2017, https://doi.org/10.1016/j.physbeh.2017.08.020
- Transcriptomic characterization and curation of candidate neuropeptides regulating reproduction in the eyestalk ganglia of the Australian crayfish, Cherax quadricarinatus vol.6, pp.1, 2016, https://doi.org/10.1038/srep38658
- The Drosophila circuitry of sleep–wake regulation vol.44, 2017, https://doi.org/10.1016/j.conb.2017.03.004
- SIFamide Translates Hunger Signals into Appetitive and Feeding Behavior in Drosophila vol.20, pp.2, 2017, https://doi.org/10.1016/j.celrep.2017.06.043
- A Systematic Analysis of Drosophila Regulatory Peptide Expression in Enteroendocrine Cells vol.39, pp.4, 2016, https://doi.org/10.14348/molcells.2016.0014
- SIFamide acts on fruitless neurons to modulate sexual behavior in Drosophila melanogaster vol.74, 2015, https://doi.org/10.1016/j.peptides.2015.10.003
- A Pair of Oviduct-Born Pickpocket Neurons Important for Egg-Laying in Drosophila melanogaster vol.39, pp.7, 2016, https://doi.org/10.14348/molcells.2016.0121
- Peptidomics of Neuropeptidergic Tissues of the Tsetse Fly Glossina morsitans morsitans vol.26, pp.12, 2015, https://doi.org/10.1007/s13361-015-1248-1
- CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila vol.6, pp.1, 2016, https://doi.org/10.1038/srep32113
- Modulation of light-driven arousal by LIM-homeodomain transcription factor Apterous in large PDF-positive lateral neurons of the Drosophila brain vol.6, pp.1, 2016, https://doi.org/10.1038/srep37255
- FMRFamide signaling promotes stress-induced sleep in Drosophila vol.47, 2015, https://doi.org/10.1016/j.bbi.2014.12.028
- The neuropeptide SIFamide in the brain of three cockroach species vol.524, pp.7, 2016, https://doi.org/10.1002/cne.23910
- Changes in Female Drosophila Sleep following Mating Are Mediated by SPSN-SAG Neurons vol.31, pp.6, 2016, https://doi.org/10.1177/0748730416668048
- A connectome of a learning and memory center in the adult Drosophila brain vol.6, 2017, https://doi.org/10.7554/eLife.26975
- The Drosophila Circadian Clock Gates Sleep through Time-of-Day Dependent Modulation of Sleep-Promoting Neurons vol.39, pp.2, 2016, https://doi.org/10.5665/sleep.5442
- insulin-producing cells vol.30, pp.23, 2016, https://doi.org/10.1101/gad.288258.116
- Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of drosophila vol.6, pp.2050-084X, 2017, https://doi.org/10.7554/eLife.26519
- Sleep in Insects vol.63, pp.1, 2018, https://doi.org/10.1146/annurev-ento-020117-043201
- Circadian Behaviors vol.33, pp.1, 2018, https://doi.org/10.1152/physiol.00020.2017
- vol.205, pp.4, 2017, https://doi.org/10.1534/genetics.115.185157
- Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research vol.8, pp.None, 2014, https://doi.org/10.3389/fnsys.2014.00133
- Sleep homeostasis inDrosophila: a window on the vital function of sleep vol.11, pp.None, 2014, https://doi.org/10.1093/biohorizons/hzy009
- The neurobiological basis of sleep: Insights from Drosophila vol.87, pp.None, 2014, https://doi.org/10.1016/j.neubiorev.2018.01.015
- Similarities and differences in circuit responses to applied Gly1-SIFamide and peptidergic (Gly1-SIFamide) neuron stimulation vol.121, pp.3, 2014, https://doi.org/10.1152/jn.00567.2018
- Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors vol.42, pp.4, 2014, https://doi.org/10.14348/molcells.2019.2451
- SIFamide peptides modulate cardiac activity differently in two species of Cancer crab vol.282, pp.None, 2014, https://doi.org/10.1016/j.ygcen.2019.06.008
- A circadian output center controlling feeding:fasting rhythms in Drosophila vol.15, pp.11, 2019, https://doi.org/10.1371/journal.pgen.1008478
- The connectome of the adult Drosophila mushroom body provides insights into function vol.9, pp.None, 2014, https://doi.org/10.7554/elife.62576
- RPamide neuropeptides NLP-22 and NLP-2 act through GnRH-like receptors to promote sleep and wakefulness in C. elegans vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-66536-2
- The neuropeptide SMYamide, a SIFamide paralog, is expressed by salivary gland innervating neurons in the American cockroach and likely functions as a hormone vol.136, pp.None, 2014, https://doi.org/10.1016/j.peptides.2020.170466
- Identification of neuropeptide receptors from the brain of the bean pod borer, Maruca vitrata vol.25, pp.1, 2014, https://doi.org/10.1016/j.aspen.2021.11.006