DOI QR코드

DOI QR Code

SIFamide and SIFamide Receptor Define a Novel Neuropeptide Signaling to Promote Sleep in Drosophila

  • Park, Sangjin (Department of Biological Sciences, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology) ;
  • Sonn, Jun Young (Department of Biological Sciences, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology) ;
  • Oh, Yangkyun (Department of Biological Sciences, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology) ;
  • Lim, Chunghun (Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology) ;
  • Choe, Joonho (Department of Biological Sciences, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology)
  • Received : 2013.12.16
  • Accepted : 2014.03.04
  • Published : 2014.04.30

Abstract

SIFamide receptor (SIFR) is a Drosophila G protein-coupled receptor for the neuropeptide SIFamide (SIFa). Although the sequence and spatial expression of SIFa are evolutionarily conserved among insect species, the physiological function of SIFa/SIFR signaling remains elusive. Here, we provide genetic evidence that SIFa and SIFR promote sleep in Drosophila. Either genetic ablation of SIFa-expressing neurons in the pars intercerebralis (PI) or pan-neuronal depletion of SIFa expression shortened baseline sleep and reduced sleep-bout length, suggesting that it caused sleep fragmentation. Consistently, RNA interference-mediated knockdown of SIFR expression caused short sleep phenotypes as observed in SIFa-ablated or depleted flies. Using a panel of neuron-specific Gal4 drivers, we further mapped SIFR effects to subsets of PI neurons. Taken together, these results reveal a novel physiological role of the neuropeptide SIFa/SIFR pathway to regulate sleep through sleep-promoting neural circuits in the PI of adult fly brains.

Keywords

References

  1. Agrawal, T., Sadaf, S., and Hasan, G. (2013). A genetic RNAi screen for IP3/$Ca^{2+}$ coupled GPCRs in Drosophila identifies the PdfR as a regulator of insect flight. PLoS Genet. 9, e1003849. https://doi.org/10.1371/journal.pgen.1003849
  2. Berger, R.J., and Phillips, N.H. (1995). Energy-conservation and sleep. Behav. Brain Res. 69, 65-73. https://doi.org/10.1016/0166-4328(95)00002-B
  3. Besedovsky, L., Lange, T., and Born, J. (2012). Sleep and immune function. Pflug. Arch. Eur. J. Phy. 463, 121-137. https://doi.org/10.1007/s00424-011-1044-0
  4. Broeck, J.V. (2001). Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides 22, 241-254. https://doi.org/10.1016/S0196-9781(00)00376-4
  5. Cirelli, C. (2009). The genetic and molecular regulation of sleep: from fruit flies to humans. Nat. Rev. Neurosci. 10, 549-560. https://doi.org/10.1038/nrn2683
  6. Crocker, A., and Sehgal, A. (2008). Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms. J. Neurosci. 28, 9377-9385. https://doi.org/10.1523/JNEUROSCI.3072-08a.2008
  7. Crocker, A., and Sehgal, A. (2010). Genetic analysis of sleep. Genes Dev. 24, 1220-1235. https://doi.org/10.1101/gad.1913110
  8. Crocker, A., Shahidullah, M., Levitan, I.B., and Sehgal, A. (2010). Identification of a neural circuit that underlies the effects of octopamine on sleep: wake behavior. Neuron 65, 670-681. https://doi.org/10.1016/j.neuron.2010.01.032
  9. Dworak, M., McCarley, R.W., Kim, T., Kalinchuk, A.V., and Basheer, R. (2010). Sleep and brain energy levels: ATP changes during sleep. J. Neurosci. 30, 9007-9016. https://doi.org/10.1523/JNEUROSCI.1423-10.2010
  10. Foltenyi, K., Greenspan, R.J., and Newport, J.W. (2007). Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat. Neurosci. 10, 1160-1167. https://doi.org/10.1038/nn1957
  11. Groth, A.C., Fish, M., Nusse, R., and Calos, M.P. (2004). Construction of transgenic Drosophila by using the site-specific integrase from phage phi C31. Genetics 166, 1775-1782. https://doi.org/10.1534/genetics.166.4.1775
  12. Gwack, Y., Sharma, S., Nardone, J., Tanasa, B., Iuga, A., Srikanth, S., Okamura, H., Bolton, D., Feske, S., Hogan, P.G., et al. (2006). A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441, 646-650. https://doi.org/10.1038/nature04631
  13. Hendricks, J.C., Finn, S.M., Panckeri, K.A., Chavkin, J., Williams, J.A., Sehgal, A., and Pack, A.I. (2000). Rest in Drosophila is a sleep-like state. Neuron 25, 129-138. https://doi.org/10.1016/S0896-6273(00)80877-6
  14. Janssen, I., Schoofs, L., Spittaels, K., Neven, H., VandenBroeck, J., Devreese, B., VanBeeumen, J., Shabanowitz, J., Hunt, D.F., and DeLoof, A. (1996). Isolation of NEB-LFamide, a novel myotropic neuropeptide from the grey fleshfly. Mol. Cell. Endocrinol. 117, 157-165. https://doi.org/10.1016/0303-7207(95)03746-2
  15. Joiner, W.J., Crocker, A., White, B.H., and Sehgal, A. (2006). Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441, 757-760. https://doi.org/10.1038/nature04811
  16. Jorgensen, L.M., Hauser, F., Cazzamali, G., Williamson, M., and Grimmelikhuijzen, C.J. (2006). Molecular identification of the first SIFamide receptor. Biochem. Biophys. Res. Commun. 340, 696-701. https://doi.org/10.1016/j.bbrc.2005.12.062
  17. Kahsai, L., and Winther, A.M. (2011). Chemical neuroanatomy of the Drosophila central complex: distribution of multiple neuropeptides in relation to neurotransmitters. J. Comp. Neurol. 519, 290-315. https://doi.org/10.1002/cne.22520
  18. Keene, A.C., Duboue, E.R., McDonald, D.M., Dus, M., Suh, G.S.B., Waddell, S., and Blau, J. (2010). Clock and cycle limit starvationinduced sleep loss in Drosophila. Curr. Biol. 20, 1209-1215. https://doi.org/10.1016/j.cub.2010.05.029
  19. Liu, Q.L., Liu, S., Kodama, L., Driscoll, M.R., and Wu, M.N. (2012). Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr. Biol. 22, 2114-2123. https://doi.org/10.1016/j.cub.2012.09.008
  20. Macfadye, U.M., Oswald, I., and Lewis, S.A. (1973). Starvation and human slow-wave sleep. J. Appl. Physiol. 35, 391-394. https://doi.org/10.1152/jappl.1973.35.3.391
  21. Mignot, E. (2008). Why we sleep: the temporal organization of recovery. PLoS Biol. 6, e106. https://doi.org/10.1371/journal.pbio.0060106
  22. Mignot, E., Taheri, S., and Nishino, S. (2002). Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat. Neurosci. 5, 1071-1075. https://doi.org/10.1038/nn944
  23. Neely, G.G., Hess, A., Costigan, M., Keene, A.C., Goulas, S., Langeslag, M., Griffin, R.S., Belfer, I., Dai, F., Smith, S.B., et al. (2010). A genome-wide Drosophila screen for heat nociception identifies alpha 2 delta 3 as an evolutionarily conserved pain gene. Cell 143, 628-638. https://doi.org/10.1016/j.cell.2010.09.047
  24. Paik, D., Jang, Y.G., Lee, Y.E., Lee, Y.N., Yamamoto, R., Gee, H.Y., Yoo, S., Bae, E., Min, K.J., Tatar, M., et al. (2012). Misexpression screen delineates novel genes controlling Drosophila lifespan. Mech. Ageing Dev. 133, 234-245. https://doi.org/10.1016/j.mad.2012.02.001
  25. Parisky, K.M., Agosto, J., Pulver, S.R., Shang, Y.H., Kuklin, E., Hodge, J.J.L., Kang, K., Liu, X., Garrity, P.A., Rosbash, M., et al. (2009). PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit (vol. 60, pg. 672-682, 2008). Neuron 61, 152.
  26. Pitman, J.L., McGill, J.J., Keegan, K.P., and Allada, R. (2006). A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441, 753-756. https://doi.org/10.1038/nature04739
  27. Rechtschaffen, A., and Bergmann, B.M. (2002). Sleep deprivation in the rat: An update of the 1989 paper. Sleep 25, 18-24. https://doi.org/10.1093/sleep/25.1.18
  28. Roeder, T. (1999). Octopamine in invertebrates. Prog. Neurobiol. 59, 533-561. https://doi.org/10.1016/S0301-0082(99)00016-7
  29. Selbie, L.A., and Hill, S.J. (1998). G protein-coupled-receptor crosstalk: the fine-tuning of multiple receptor-signalling pathways. Trends Pharmacol. Sci. 19, 87-93. https://doi.org/10.1016/S0165-6147(97)01166-8
  30. Shang, Y.H., Donelson, N.C., Vecsey, C.G., Guo, F., Rosbash, M., and Griffith, L.C. (2013). Short neuropeptide F is a sleep-promoting inhibitory modulator. Neuron 80, 171-183. https://doi.org/10.1016/j.neuron.2013.07.029
  31. Shaw, P.J., Cirelli, C., Greenspan, R.J., and Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834-1837. https://doi.org/10.1126/science.287.5459.1834
  32. Smith, T.A.D. (2001). Type A gamma-aminobutyric acid (GABA(A)) receptor subunits and benzodiazepine binding: significance to clinical syndromes and their treatment. Br. J. Biomed. Sci. 58, 111-121.
  33. Southall, T.D., Elliott, D.A., and Brand, A.H. (2008). The GAL4 system: a versatile toolkit for gene expression in Drosophila. CSH Protoc. 2008, pdb.top49.
  34. Terhzaz, S., Rosay, P., Goodwin, S.F., and Veenstra, J.A. (2007). The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem. Biophys. Res. Commun. 352, 305-310. https://doi.org/10.1016/j.bbrc.2006.11.030
  35. Tononi, G., and Cirelli, C. (2014). Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12-34. https://doi.org/10.1016/j.neuron.2013.12.025
  36. Verleyen, P., Huybrechts, J., Baggerman, G., Van Lommel, A., De Loof, A., and Schoofs, L. (2004). SIFamide is a highly conserved neuropeptide: a comparative study in different insect species. Biochem. Biophys. Res. Commun. 320, 334-341. https://doi.org/10.1016/j.bbrc.2004.05.173
  37. Wisor, J.P., Nishino, S., Sora, I., Uhl, G.H., Mignot, E., and Edgar, D.M. (2001). Dopaminergic role in stimulant-induced wakefulness. J. Neurosci. 21, 1787-1794.

Cited by

  1. Control of sleep by a network of cell cycle genes vol.9, pp.4, 2015, https://doi.org/10.1080/19336934.2016.1153776
  2. Mechanisms of sleep plasticity due to sexual experience in Drosophila melanogaster vol.180, 2017, https://doi.org/10.1016/j.physbeh.2017.08.020
  3. Transcriptomic characterization and curation of candidate neuropeptides regulating reproduction in the eyestalk ganglia of the Australian crayfish, Cherax quadricarinatus vol.6, pp.1, 2016, https://doi.org/10.1038/srep38658
  4. The Drosophila circuitry of sleep–wake regulation vol.44, 2017, https://doi.org/10.1016/j.conb.2017.03.004
  5. SIFamide Translates Hunger Signals into Appetitive and Feeding Behavior in Drosophila vol.20, pp.2, 2017, https://doi.org/10.1016/j.celrep.2017.06.043
  6. A Systematic Analysis of Drosophila Regulatory Peptide Expression in Enteroendocrine Cells vol.39, pp.4, 2016, https://doi.org/10.14348/molcells.2016.0014
  7. SIFamide acts on fruitless neurons to modulate sexual behavior in Drosophila melanogaster vol.74, 2015, https://doi.org/10.1016/j.peptides.2015.10.003
  8. A Pair of Oviduct-Born Pickpocket Neurons Important for Egg-Laying in Drosophila melanogaster vol.39, pp.7, 2016, https://doi.org/10.14348/molcells.2016.0121
  9. Peptidomics of Neuropeptidergic Tissues of the Tsetse Fly Glossina morsitans morsitans vol.26, pp.12, 2015, https://doi.org/10.1007/s13361-015-1248-1
  10. CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila vol.6, pp.1, 2016, https://doi.org/10.1038/srep32113
  11. Modulation of light-driven arousal by LIM-homeodomain transcription factor Apterous in large PDF-positive lateral neurons of the Drosophila brain vol.6, pp.1, 2016, https://doi.org/10.1038/srep37255
  12. FMRFamide signaling promotes stress-induced sleep in Drosophila vol.47, 2015, https://doi.org/10.1016/j.bbi.2014.12.028
  13. The neuropeptide SIFamide in the brain of three cockroach species vol.524, pp.7, 2016, https://doi.org/10.1002/cne.23910
  14. Changes in Female Drosophila Sleep following Mating Are Mediated by SPSN-SAG Neurons vol.31, pp.6, 2016, https://doi.org/10.1177/0748730416668048
  15. A connectome of a learning and memory center in the adult Drosophila brain vol.6, 2017, https://doi.org/10.7554/eLife.26975
  16. The Drosophila Circadian Clock Gates Sleep through Time-of-Day Dependent Modulation of Sleep-Promoting Neurons vol.39, pp.2, 2016, https://doi.org/10.5665/sleep.5442
  17. insulin-producing cells vol.30, pp.23, 2016, https://doi.org/10.1101/gad.288258.116
  18. Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of drosophila vol.6, pp.2050-084X, 2017, https://doi.org/10.7554/eLife.26519
  19. Sleep in Insects vol.63, pp.1, 2018, https://doi.org/10.1146/annurev-ento-020117-043201
  20. Circadian Behaviors vol.33, pp.1, 2018, https://doi.org/10.1152/physiol.00020.2017
  21. vol.205, pp.4, 2017, https://doi.org/10.1534/genetics.115.185157
  22. Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research vol.8, pp.None, 2014, https://doi.org/10.3389/fnsys.2014.00133
  23. Sleep homeostasis inDrosophila: a window on the vital function of sleep vol.11, pp.None, 2014, https://doi.org/10.1093/biohorizons/hzy009
  24. The neurobiological basis of sleep: Insights from Drosophila vol.87, pp.None, 2014, https://doi.org/10.1016/j.neubiorev.2018.01.015
  25. Similarities and differences in circuit responses to applied Gly1-SIFamide and peptidergic (Gly1-SIFamide) neuron stimulation vol.121, pp.3, 2014, https://doi.org/10.1152/jn.00567.2018
  26. Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors vol.42, pp.4, 2014, https://doi.org/10.14348/molcells.2019.2451
  27. SIFamide peptides modulate cardiac activity differently in two species of Cancer crab vol.282, pp.None, 2014, https://doi.org/10.1016/j.ygcen.2019.06.008
  28. A circadian output center controlling feeding:fasting rhythms in Drosophila vol.15, pp.11, 2019, https://doi.org/10.1371/journal.pgen.1008478
  29. The connectome of the adult Drosophila mushroom body provides insights into function vol.9, pp.None, 2014, https://doi.org/10.7554/elife.62576
  30. RPamide neuropeptides NLP-22 and NLP-2 act through GnRH-like receptors to promote sleep and wakefulness in C. elegans vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-66536-2
  31. The neuropeptide SMYamide, a SIFamide paralog, is expressed by salivary gland innervating neurons in the American cockroach and likely functions as a hormone vol.136, pp.None, 2014, https://doi.org/10.1016/j.peptides.2020.170466
  32. Identification of neuropeptide receptors from the brain of the bean pod borer, Maruca vitrata vol.25, pp.1, 2014, https://doi.org/10.1016/j.aspen.2021.11.006