DOI QR코드

DOI QR Code

Fabrication and Characteristics of Chitosan Non-woven Fabric developed using only water as plasticizer

  • Lee, Shin-Hee (Dept. of Clothing & Textiles, Kyungpook National University) ;
  • Hsieh, You-Lo (Division of Textiles and Clothing, University of California)
  • Received : 2014.01.07
  • Accepted : 2014.03.10
  • Published : 2014.04.30

Abstract

This article describes a method for producing chitosan non-woven fabrics by just hot pressing without the use of a binder. A study has been made of the wet spinning of chitosan fiber. The fibers were rinsed thoroughly in running water and chopped wet into staples of with a length of approximately 5-10 mm. The chopped chitosan staples were dispersed uniformly in water and fabricated using a non-woven making machine. This study examined the formation and the characteristics of chitosan non-woven fabrics manufactured by hot pressing without the use of a binder. The effects of the non-woven fabrication conditions on the thermal, morphological, structural, and physical properties of chitosan non-woven fabric with and without water as a plasticizer were studied. The temperature of the exothermic peak, decomposition of chitosan fibers increased with increasing heating rate. Water in the chitosan fiber effectively plasticized the chitosan fiber. The thermal bonded structure of the wet chitosan fiber with water as a plasticizer was clearly found in many parts of the non-woven fabric at a fabrication temperature of $200^{\circ}C$. The intensity and profile of the (100) plane($2{\theta}=10.2^{\circ}$) and (040) plane($2{\theta}=20.9^{\circ}$) in the chitosan non-woven fabric decreases and became smooth in the non-woven fabric formation by melting.

Keywords

References

  1. Alonso, J. G., Covas, C. P., & Nieto, J. M. (1983). Determination of the degree of acetylation of chitin and chitosan by thermal analysis. Journal of Thermal Analysis and Calorimetry, 28(1), 189-193. https://doi.org/10.1007/BF02105290
  2. Atureliya, S. K., & Bashir, Z. (1993). Continuous plasticized melt-extrusion of polyacrylonitrile homopolymer. Polymer, 34(24), 5116-5122. https://doi.org/10.1016/0032-3861(93)90256-A
  3. Carlos, P. C., Waldo, A. M., & Julio, S. R. (1993). A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan. Polymer Degradation and Stability, 39(1), 21-28. https://doi.org/10.1016/0141-3910(93)90120-8
  4. Crofton, D. J., & Pethrick, R. A. (1982). Dielectric studies of cellulose and its derivatives: 2. Effects of pressure and temperature on relaxation behavior. Polymer, 23(11), 1609-1614. https://doi.org/10.1016/0032-3861(82)90180-X
  5. Gao, Q., Wan, A., & Zhang, Y. (2007). Effect of reacetylation and degradation on the chemical and crystal structures of chitosan. Journal of Applied Polymer Science, 104(4), 2720-2728. doi:10.1002/app.25711
  6. Grant, S., Blair, H. S., & Mckay, G. (1989). Structural studies on chitosan other chitin derivatives. Macromolecular Chemistry and Physics, 190(9), 2279-2286. https://doi.org/10.1002/macp.1989.021900928
  7. Grove, D., Desai, P., & Abhiraman, A. S. (1988). Exploratory experiments in the conversion of plasticized melt spun PAN-based precursors to carbon fibers. Carbon, 26(3), 403-411. https://doi.org/10.1016/0008-6223(88)90233-3
  8. Hasegawa, M., Isogai, A., Onabe, F., Usuda, M., & Atalla, R. H. (1992). Characterization of cellulose-chitosan blend film. Journal of Applied Polymer Science, 45(11), 1873-1879. https://doi.org/10.1002/app.1992.070451101
  9. Hermans, P. H., & Weidinger, A. (1961). Quantitative investigation of the X-Ray diffraction picture of some typical rayon specimens, Part I. Textile Research Journal, 31(6), 558-571. https://doi.org/10.1177/004051756103100607
  10. Hirano, S., & Moriyama, T. (2004). Some novel N-(carboxyacyl) chitosan filament. Carbohydrate Polymers, 55(3), 245-248. https://doi.org/10.1016/j.carbpol.2003.07.003
  11. Jacek, D., Lidia, S., Magdalena, K., Luba, J., & Ryszard, C. (1990). Structure-bioactivity relationship of chitin derivatives-Part I: The effect of solid chitin derivatives on blood coagulation. Journal of Bioactive and Compatible Polymer, 5(3), 293-299. https://doi.org/10.1177/088391159000500305
  12. Keely, C. M., Zhang, X., & McBrierty, V. J. (1995). Hydration and plasticization effects in cellulose acetate: a solid-state NMR study. Journal of Molecular Structure, 355(1), 33-46. https://doi.org/10.1016/0022-2860(95)08865-S
  13. Lee, S. H. (2003). Ripening time and fiber formation of chitosan spinning dope. Journal of Applied Polymer Science, 90(10), 2870-2877. https://doi.org/10.1002/app.13070
  14. Lee, S. H. (2000). The mechanism and characteristics of dry-jet-wet spinning of chitosan fibers. Journal of Korean Fiber Society, 37(7), 7-15.
  15. Lee, S. H., Kim, M. J., & Park, H. S. (2010). Characteristics of cotton fabrics treated with epichlorohydrin and chitosan. Journal of Applied Polymer Science, 117(2), 623-628. doi:10.1002/app.31351
  16. Lee, S. H., Park, S. Y., & Choi, J. H. (2004). Fiber formation and physical properties of chitosan fiber crosslinked by epichlorohydrin in a wet spinning system: The effect of the concentration of the crosslinking agent epichlorohydrin. Journal of Applied Polymer Science, 92(3), 2054-2062. https://doi.org/10.1002/app.20160
  17. Muzzarelli, R. A. A. (2009). Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers, 76(2), 167-182. https://doi.org/10.1016/j.carbpol.2008.11.002
  18. Pouplin, M., Redl, A., & Gontard, N. (1999). Glass transition of wheat gluten plasticized with water, glycerol, or sorbitol. Journal of Agricultural and Food Chemistry, 47(2), 538-543. https://doi.org/10.1021/jf980697w
  19. Reddy, N., & Yang, Y. (2011). Completely biodegradable soyprotainjute biocomposites developed using water without any chemicals as plasticizer. Industrial Crops and Products, 33(1), 35-41. doi:10.1016/j.indcrop.2010.08.0
  20. Sergio, T. G., Ocio, M. J., & Lagaron, J. M. (2008). Development of active antimicrobial fiber used chitosan polysaccharide nanostructures using electrospinning. Engineering in Life Sciences, 8(3), 303-314. doi:10.1002/elsc.200700066
  21. Shalumona, K. T., Binulala, N. S, Sevamurugana, N., Naira, S. V., Menona, D., Furuikeb, T., Tamurab, H., & Jayakumar, R. (2009). Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydrate Polymers, 77(4), 863-869. doi:10.1016/j.carbpol 2009.03.009
  22. Tokura, S., Baba, S., Uraki, Y., Miura, Y., Nishi, N., & Hasekawa, O. (1990). Carboxymethyl-chitin as a drug carrier of sustained release. Carbohydrate Polymers, 13(3), 273-281. https://doi.org/10.1016/0144-8617(90)90059-2