DOI QR코드

DOI QR Code

On the Existence of the (2,1) Mother Code of (n,n-1) Convolutional Code

(n,n-1) 길쌈부호에 대한 (2,1) 마더부호의 존재

  • Jang, Hwan-Seok (Department of Electronics, Information and Communication Engineering, Hongik University) ;
  • Chung, Ha-Bong (Department of Electronics, Information and Communication Engineering, Hongik University) ;
  • Seong, Jin-Woo
  • Received : 2014.01.08
  • Accepted : 2014.03.26
  • Published : 2014.04.30

Abstract

The rate of the channel code can be controlled by various methods. Puncturing is one of the methods of increasing the code rate, and the original code before puncturing is called the mother code. Any (n,k) convolutional code is obtainable by puncturing some mother codes, and the process of finding the mother code is necessary for designing the optimum channel decoder. In this paper, we proved that any (n,n-1) convolutional code has (2,1) mother codes regardless of the puncturing pattern and showed that they must be equivalent.

모든 채널부호는 다양한 방법에 따라 부호율의 조절이 가능하다. 부호율을 높이는 방법들 중 하나가 천공이며, 이 때, 천공에 사용되는 채널부호를 마더부호라 부른다. 임의의 (n,k) 길쌈부호는 항상 어떤 마더부호를 천공함으로써 만들 수 있을 것이고, 이때 천공패턴에 따른 마더부호를 구하는 과정은 최적의 복호화기를 설계하는데 필요하다. 본 논문에서는 주어진 천공패턴에서 (2,1) 길쌈부호가 (n,n-1) 길쌈부호의 마더부호이기 위한 조건과 마더부호로 가능한 길쌈부호들 사이의 동등 관계에 대하여 살펴본다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. L. Sari, "Effects of puncturing patterns on punctured Convolutioal Codes," TELKOMNIKA, vol. 10, no. 4, pp. 752-762, Aug. 2012.
  2. M. A. Kousa and A. H. Mugaibel, "Puncturing effects on turbo codes," in Proc. IEE Commun., vol. 149, no. 3, pp. 132-138, Jun. 2002. https://doi.org/10.1049/ip-com:20020230
  3. R. M. Deshmukh and S. A. Ladhake, "Analysis of various puncturing patterns and code rates: Turbo code," Int. J. Electronic Engineering Research, vol. 1, no. 2, pp. 79-88, 2009.
  4. J. Lee, H. Lee, I.-S. Kang, S. Yun, C. Park, and Y. Song, "Recognition of convolutional code with performance analysis," J. KICS, vol. 37, no. 4, pp. 260-268, Apr. 2012. https://doi.org/10.7840/KICS.2012.37A.4.260
  5. M. Cluzeau and M. Finiasz, "Reconstruction of punctured convolutional codes," in Proc. IEEE ITW, pp. 75-79, Taormina, Oct. 2009.