DOI QR코드

DOI QR Code

Network Throughput Analysis of Mechanical Relay Assisted Transmission in Wireless Line Networks

데이터 운송 중계기를 운용하는 무선 선형 네트워크에서의 전송률 성능 분석

  • 진현보 (Yonsei university 전기전자공학과 이동통신 연구실) ;
  • 민병윤 (연세대학교 전기전자공학과 이동통신 연구실) ;
  • 서정욱 (남서울대학교 정보통신공학과) ;
  • 김동구 (Yonsei university 전기전자공학과 이동통신 연구실)
  • Received : 2013.12.10
  • Accepted : 2014.03.25
  • Published : 2014.04.30

Abstract

Mechanical Relay (McR) is a relaying architecture to enable data communications, where it can endure the transportation delay and intermittent disconnection. Every kind of vehicular infrastructures can be readily utilized for the mechanical relaying in the manner of moving natures, which brings the most significant consequences compared to conventional relaying schemes. In this paper, we analyze the ergodic network throughput of McR in wireless line networks (WLN) to compare the results between employing McRs and direct multi-hopping through the users without McRs. We demonstrate the McR scheme that are not only Ve-SISO but also Ve-SIMO/MISO. The numerical results of ergodic network throughputs contribute to the trade-off relation depending on the speed v of McRs, intensity factors ${\lambda}_u$ and ${\lambda}_r$, and the methods of how McRs are utilized.

데이터-운송 중계기(mechanical relay: McR)는 운송 지연 및 간헐적 접속단절을 반영하는 중계기법 중에 하나다. 기존의 비이동성 중계기법과 달리, 데이터-운송 중계기법은 다양한 종류의 차량 및 교통기반시설의 이동성을 이용하여 근거리의 송수신이 가능하게 하는 점에서 잠재적인 이득이 존재한다. 본 논문에서는 McR을 운용하는 무선 선형 네트워크(wireless line networks: WLN)를 고려하고, 각 사용자간의 다중 홉 무선전송 기법과 데이터-운송 중계기법을 비교하고, 에르고딕 네트워크 전송률의 관점에서 분석한다. 또한 Vehicle SISO(Ve-SISO) 뿐만 아니라 Vehicle SIMO/MISO(Ve-SIMO/MISO)의 경우에 대해서도 McR의 사용을 고려한다. 에르고딕 네트워크 전송률에 대한 실험 결과로부터 McR의 속도, 사용자와 McR의 밀도, 그리고 McR의 사용방식에 따라서 나타나는 트레이드-오프관계를 살펴본다.

Keywords

References

  1. M. Grossglauser and D. Tse, "Mobility increases the capacity of ad hoc wireless networks," IEEE/ACM Trans. Netw., vol. 10, no. 4, pp. 477-486, Aug. 2002. https://doi.org/10.1109/TNET.2002.801403
  2. S. N. Diggavi, M. Grossglauser, and D. Tse, "Even one-dimensional mobility increases the capacity of wireless networks," IEEE Trans. Inf. Theory, vol. 51, no. 11, pp. 3947-3954, Nov. 2005. https://doi.org/10.1109/TIT.2005.856966
  3. J. Mammen and D. Shah, "Throughput and delay in random wireless networks with restricted mobility," IEEE Trans. Inf. Theory, vol. 53, no. 3, pp. 1108- 1116, Mar. 2007. https://doi.org/10.1109/TIT.2006.890720
  4. A. Gamal, J. Mammen, B. Prabhakar, and D. Shah, "Throughput-delay trade-off in wireless networks," in IEEE INFOCOM, vol. 1, Mar. 2004.
  5. G. Sharma and R. Mazumdar, "Delay and capacity trade-offs in mobile ad hoc networks," IEEE/ACM Trans. Netw., vol. 15, no. 5, Oct. 2007.
  6. X. Wang, Y. Bei, Q. Peng, and L. Fu, "Speed improves delay-capacity trade-off in motion cast," IEEE Trans. Parallel Distributed Syst., vol. 22, no. 5, pp. 729-742, May 2011. https://doi.org/10.1109/TPDS.2010.126
  7. M. J. Neely and E. Modiano, "Capacity and delay tradeoffs for ad hoc mobile networks," IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1917-1937, Jun. 2005. https://doi.org/10.1109/TIT.2005.847717
  8. G. Sharma and R. Mazumdar, "Scaling laws for capacity and delay in wireless ad hoc networks with random mobility," IEEE ICC, vol. 7, pp. 3869-3873, Jun. 2004.
  9. P. Pereira, A. Casaca, J. Rodrigues, V. Soares, J. Triay, and C. Cervello-Pastor, "From delay-tolerant networks to vehicular delaytolerant networks," IEEE Commun. Surveys & Tutorials, vol. 14, no. 4, pp. 1166-1182, Sept. 2011.
  10. J. Zhao, Y. Zhang, and G. Cao, "Data pouring and buffering on the road: A new data dissemination paradigm for vehicular ad hoc networks," IEEE Trans. Veh. Technol., vol. 56, no. 6, pp. 3266-3277, Nov. 2007. https://doi.org/10.1109/TVT.2007.906412
  11. J. Zhao and G. Cao, "VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc Networks," IEEE Trans. Veh. Technol., vol. 57, no. 3, pp. 1910-1922, May 2008. https://doi.org/10.1109/TVT.2007.901869
  12. D. Niyato and P. Wang, "Optimization of the Mobile Router and Traffic Sources in Vehicular Delay-Tolerant Network," IEEE Trans. Veh. Technol., vol. 58, no. 9, pp. 5095-5104, Nov. 2009. https://doi.org/10.1109/TVT.2009.2025379
  13. J. Harri, F. Filali, and C. Bonnet, "Mobility models for vehicular ad hoc networks: a survey and taxonomy," IEEE Commun. Surveys & Tutorials, vol. 11, no. 4, pp. 19-41, Dec. 2009. https://doi.org/10.1109/SURV.2009.090403
  14. E. Schoch, F. Kargl, and M. Weber, "Communication patterns in VANETs," IEEE Commun. Mag., vol. 46, no. 11, pp. 119-125, Nov. 2008. https://doi.org/10.1109/MCOM.2008.4689254
  15. O. Tonguz, N. Wisitpongphan, and F. Bai, "DV-CAST: A distributed vehicular broadcast protocol for vehicular ad hoc networks," IEEE Wirel. Commun., vol. 17, no. 2, pp. 47-57, Apr. 2010.
  16. P. Kolios, V. Friderikos, and K. Papadaki, "Energy Consumption and Resource Utilization in Mechanical Relaying," IEEE Veh. Technol. Mag., vol. 6, no. 1, pp. 24-30, Mar. 2011.
  17. R. Woo, J. Lee, and D. S. Han, "Communication capacity of vehicular communication systems based on IEEE 802.11a," in Proc. KICS, pp. 306-307, Jun. 2009.
  18. J. Shim, B.-Y. Min, C.-H. An, Y.-J. Ryu, U. Pak and D. Kim, "Mechanical relaying transmission over point-to-point efficient low-power management," in Proc. KONI, pp 73, Jul. 2012.
  19. T. Wang, A. Cano, G. Giannakis, and J. Laneman, "High-performance cooperative demodulation with decode-and-forward relays," IEEE Trans. Commun., vol. 55, no. 7, pp. 1427-1438, Jul. 2007. https://doi.org/10.1109/TCOMM.2007.900631