DOI QR코드

DOI QR Code

Nash 협상 해법 기반 전력 최소화를 위한 다중 청소로봇간 영역분배 알고리즘

Cleaning Area Division Algorithm for Power Minimized Multi-Cleanup Robots Based on Nash Bargaining Solution

  • Choi, Jisoo (Multimedia Communications and Networking Lab., Ewha Womans University) ;
  • Park, Hyunggon (Multimedia Communications and Networking Lab., Ewha Womans University)
  • 투고 : 2014.01.31
  • 심사 : 2014.04.04
  • 발행 : 2014.04.30

초록

본 논문에서는 주어진 영역 안에서 다중 청소로봇을 동시에 운용하여 전력 소비량을 최소화하는 방법을 제안한다. 협력 게임 이론 중 Nash 협상 해법을 이용하여 다중 청소로봇 사이의 가용 자원 및 대상 영역의 특성을 고려하여 대상 영역을 공평하고 효율적으로 관리하여 자원 효용을 극대화하였으며 궁극적으로 이를 통하여 총 소비전력량을 최소화 할 수 있다. 본 논문에서는 가용 자원 및 대상 영역의 특성을 포괄할 수 있는 효용 함수를 정의하고 이를 통한 다중 로봇 간 협상 게임을 통하여 공평하고 효용이 파레토 최적인 지점에서 각 청소로봇의 해당 영역이 결정된다. 시뮬레이션을 통하여 제안한 해결 방법이 임의 공간 할당 방법 대비 소비전력량 면에서 15-30% 이상의 효율이 개선되는 것을 확인할 수 있었다.

In this paper, we propose an approach to minimizing total power consumption by deploying multiple clean-up robots simultaneously in a given area. For this, we propose to use the cooperative game theoretic approaches (i.e., Nash bargaining solution (NBS)) such that the robots can optimally and fairly negotiate the area division based on available resources and characteristics of the area, thereby leading to the minimum total power consumption. We define a utility function that includes power consumptions for characteristics of areas and the robots can agree on a utility pair based on the NBS. Simulation results show that the proposed approach can reduce the total average power consumption by 15-30% compared to a random area division approach.

키워드

참고문헌

  1. H. Yaiche, R. R. Mazumdar, and C. Rosenberg, "A game theoretic framework for bandwidth allocation and pricing in broadband net-works," IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 667-678. Oct. 2000. https://doi.org/10.1109/90.879352
  2. H. Park and Mihaela van der Schaar, "Bargaining strategies for networked multimedia resource management," IEEE Trans. Signal Processing, vol. 55, no. 7, pp. 3496-3511, Jul. 2007. https://doi.org/10.1109/TSP.2007.893755
  3. Z. Han, Z. Ji, and K. J. R. Liu, "Fair multiuser channel allocation for OFDMA networks using nash bargaining and coalitions," IEEE Trans. Commun., vol. 53, pp. 1366-1375, Aug. 2005. https://doi.org/10.1109/TCOMM.2005.852826
  4. R. Mazumdar, L. G. Mason, and C. Douligeris, "Fairness in network optimal flow control: Optimality of product forms," IEEE Trans. Commun., vol. 39, no. 5, pp. 775-782, May 1991. https://doi.org/10.1109/26.87140
  5. A. Feiten and R. Mathar, "Optimal power control for multiuser CDMA channels," IEEE ISIT'05, pp. 1903-1907, Adelaide, Australia, Sept. 2005.
  6. I. Ahmad and J. Luo, "On using game theory for perceptually tuned rate control algorithm for Video Coding," IEEE Trans. Circuits and Syst. for Video Technol., vol. 16, no. 2, pp. 202-208, Feb. 2006. https://doi.org/10.1109/TCSVT.2005.859026
  7. J. Nash, "The bargaining problem," Econometrica, vol. 18, pp. 155-156, Apr. 1950. https://doi.org/10.2307/1907266
  8. H. Park, "Multimedia communications and network resource management based on bargaining solutions from cooperative game theory in multi-user environment," KICS Inf. Commun. Mag., vol. 26, no. 7, pp. 24-29, Jul. 2009.
  9. E. Kalaiand and M. Smorodinsky, "Other solutions to Nash's bargaining problem," Econometrica, vol. 43, no. 3, pp. 513-518, May 1975. https://doi.org/10.2307/1914280
  10. E. Kalai, "Proportional solutions to bargaining situations: Interpersonal utility comparisons," Econometrica, vol. 45, no. 7, pp. 1623-1630, Oct. 1977. https://doi.org/10.2307/1913954
  11. H. Park and M. van der Schaar, "Coalitionbased resource negotiation for multimedia applications in informationally decentralized networks," IEEE Trans. Multimedia, vol. 11, no. 4, pp. 765-779, Jun. 2009. https://doi.org/10.1109/TMM.2009.2017638
  12. mamirobot Mami K3, mamirobot Corporation from https://www.mamirobot.co.kr.
  13. E. Kim, H. Park, and P. Frossard, "Low complexity iterative multimedia resource allocation based on game theoretic approach," IEEE ISCAS, pp. 1099-1102, Seoul, Korea, May 2012.