DOI QR코드

DOI QR Code

HIF-1-Dependent Induction of Jumonji Domain-Containing Protein (JMJD) 3 under Hypoxic Conditions

  • Lee, Ho-Youl (Department of Life Science, University of Seoul) ;
  • Choi, Kang (Department of Life Science, University of Seoul) ;
  • Oh, Hookeun (Department of Life Science, University of Seoul) ;
  • Park, Young-Kwon (Department of Life Science, University of Seoul) ;
  • Park, Hyunsung (Department of Life Science, University of Seoul)
  • Received : 2013.09.06
  • Accepted : 2013.11.18
  • Published : 2014.01.31

Abstract

Jumonji domain-containing proteins (JMJD) catalyze the oxidative demethylation of a methylated lysine residue of histones by using $O_2$, ${\alpha}$-ketoglutarate, vitamin C, and Fe(II). Several JMJDs are induced by hypoxic stress to compensate their presumed reduction in catalytic activity under hypoxia. In this study, we showed that an H3K27me3 specific histone demethylase, JMJD3 was induced by hypoxia-inducible factor (HIF)-$1{\alpha}/{\beta}$ under hypoxia and that treatment with Clioquinol, a HIF-$1{\alpha}$ activator, increased JMJD3 expression even under normoxia. Chromatin immunoprecipitation (ChIP) analyses showed that both HIF-$1{\alpha}$ and its dimerization partner HIF-$1{\beta}$/Arnt occupied the first intron region of the mouse JMJD3 gene, whereas the HIF-$1{\alpha}/{\beta}$ heterodimer bound to the upstream region of the human JMJD3, indicating that human and mouse JMJD3 have hypoxia-responsive regulatory regions in different locations. This study shows that both mouse and human JMJD3 are induced by HIF-1.

Keywords

References

  1. Agger, K., Cloos, P.A., Christensen, J., Pasini, D., Rose, S., Rappsilber, J., Issaeva, I., Canaani, E., Salcini, A.E., and Helin, K. (2007). UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731-734. https://doi.org/10.1038/nature06145
  2. Agger, K., Cloos, P.A., Rudkjaer, L., Williams, K., Andersen, G., Christensen, J., and Helin, K. (2009). The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev. 23, 1171-1176. https://doi.org/10.1101/gad.510809
  3. Barradas, M., Anderton, E., Acosta, J.C., Li, S., Banito, A., Rodriguez-Niedenfuhr, M., Maertens, G., Banck, M., Zhou, M.M., Walsh, M.J., et al. (2009). Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev. 23, 1177-1182. https://doi.org/10.1101/gad.511109
  4. Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326. https://doi.org/10.1016/j.cell.2006.02.041
  5. Beyer, S., Kristensen, M.M., Jensen, K.S., Johansen, J.V., and Staller, P. (2008). The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J. Biol. Chem. 283, 36542-36552. https://doi.org/10.1074/jbc.M804578200
  6. Bruick, R.K., and McKnight, S.L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337-1340. https://doi.org/10.1126/science.1066373
  7. Cartharius, K., Frech, K., Grote, K., Klocke, B., Haltmeier, M., Klingenhoff, A., Frisch, M., Bayerlein, M., and Werner, T. (2005). MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21, 2933-2942. https://doi.org/10.1093/bioinformatics/bti473
  8. Chen, Z., Zang, J., Whetstine, J., Hong, X., Davrazou, F., Kutateladze, T.G., Simpson, M., Mao, Q., Pan, C.H., Dai, S., et al. (2006). Structural insights into histone demethylation by JMJD2 family members. Cell 125, 691-702. https://doi.org/10.1016/j.cell.2006.04.024
  9. Choi, S.M., Choi, K.O., Park, Y.K., Cho, H., Yang, E.G., and Park, H. (2006). Clioquinol, a Cu(II)/Zn(II) chelator, inhibits both ubiquitination and asparagine hydroxylation of hypoxia-inducible factor-1alpha, leading to expression of vascular endothelial growth factor and erythropoietin in normoxic cells. J. Biol. Chem. 281, 34056-34063. https://doi.org/10.1074/jbc.M603913200
  10. Choi, S.M., Oh, H., and Park, H. (2008). Microarray analyses of hypoxia-regulated genes in an aryl hydrocarbon receptor nuclear translocator (Arnt)-dependent manner. FEBS J. 275, 5618-5634. https://doi.org/10.1111/j.1742-4658.2008.06686.x
  11. De Santa, F., Totaro, M.G., Prosperini, E., Notarbartolo, S., Testa, G., and Natoli, G. (2007). The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130, 1083-1094. https://doi.org/10.1016/j.cell.2007.08.019
  12. Elvidge, G.P., Glenny, L., Appelhoff, R.J., Ratcliffe, P.J., Ragoussis, J., and Gleadle, J.M. (2006). Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J. Biol. Chem. 281, 15215-15226. https://doi.org/10.1074/jbc.M511408200
  13. Farrall, A.L., and Whitelaw, M.L. (2009). The HIF1alpha-inducible procell death gene BNIP3 is a novel target of SIM2s repression through cross-talk on the hypoxia response element. Oncogene 28, 3671-3680. https://doi.org/10.1038/onc.2009.228
  14. Gao, X., Wang, Q., Li, W., Yang, B., Song, H., Ju, W., Liu, S., and Cheng, J. (2011). Identification of nucleolar and coiled-body phosphoprotein 1 (NOLC1) minimal promoter regulated by NFkappaB and CREB. BMB Rep. 44, 70-75. https://doi.org/10.5483/BMBRep.2011.44.1.70
  15. Hewitson, K.S., McNeill, L.A., Riordan, M.V., Tian, Y.M., Bullock, A.N., Welford, R.W., Elkins, J.M., Oldham, N.J., Bhattacharya, S., Gleadle, J.M., et al. (2002). Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277, 26351-26355. https://doi.org/10.1074/jbc.C200273200
  16. Hewitson, K.S., Lienard, B.M., McDonough, M.A., Clifton, I.J., Butler, D., Soares, A.S., Oldham, N.J., McNeill, L.A., and Schofield, C.J. (2007). Structural and mechanistic studies on the inhibition of the hypoxia-inducible transcription factor hydroxylases by tricarboxylic acid cycle intermediates. J. Biol. Chem. 282, 3293-3301. https://doi.org/10.1074/jbc.M608337200
  17. Ko, H.P., Okino, S.T., Ma, Q., and Whitlock, J.P., Jr. (1996). Dioxininduced CYP1A1 transcription in vivo: the aromatic hydrocarbon receptor mediates transactivation, enhancer-promoter communication, and changes in chromatin structure. Mol. Cell. Biol. 16, 430-436. https://doi.org/10.1128/MCB.16.1.430
  18. Kooistra, S.M., and Helin, K. (2012). Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol. 13, 297-311. https://doi.org/10.1038/nrm3327
  19. Kouskouti, A., Scheer, E., Staub, A., Tora, L., and Talianidis, I. (2004). Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol. Cell. 14, 175-182. https://doi.org/10.1016/S1097-2765(04)00182-0
  20. Lee, C., Kim, S.J., Jeong, D.G., Lee, S.M., and Ryu, S.E. (2003) Structure of human FIH-1 reveals a unique active site pocket and interaction sites for HIF-1 and von Hippel-Lindau. J. Biol. Chem. 278, 7558-7563. https://doi.org/10.1074/jbc.M210385200
  21. Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275. https://doi.org/10.1038/20459
  22. Park, Y.K., and Park, H. (2010). Prevention of CCAAT/enhancerbinding protein beta DNA binding by hypoxia during adipogenesis. J. Biol. Chem. 285, 3289-3299. https://doi.org/10.1074/jbc.M109.059212
  23. Park, Y.K., and Park, H. (2012). Differentiated embryo chondrocyte 1 (DEC1) represses PPARgamma2 gene through interacting with CCAAT/enhancer binding protein beta (C/EBPbeta). Mol. Cells 33, 575-581. https://doi.org/10.1007/s10059-012-0002-9
  24. Park, Y.K., Park, B., Lee, S., Choi, K., Moon, Y., and Park, H. (2013). Hypoxia-inducible factor-2alpha-dependent hypoxic induction of Wnt10b expression in adipogenic cells. J. Biol. Chem. 288, 26311-26322. https://doi.org/10.1074/jbc.M113.500835
  25. Pollard, P.J., Loenarz, C., Mole, D.R., McDonough, M.A., Gleadle, J.M., Schofield, C.J., and Ratcliffe, P.J. (2008). Regulation of Jumonji-domain-containing histone demethylases by hypoxiainducible factor (HIF)-1alpha. Biochem. J. 416, 387-394. https://doi.org/10.1042/BJ20081238
  26. Schodel, J., Oikonomopoulos, S., Ragoussis, J., Pugh, C.W., Ratcliffe, P.J., and Mole, D.R. (2011). High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117, e207-217. https://doi.org/10.1182/blood-2010-10-314427
  27. Semenza, G.L. (2012). Hypoxia-inducible factors in physiology and medicine. Cell 148, 399-408. https://doi.org/10.1016/j.cell.2012.01.021
  28. Shi, Y., and Whetstine, J.R. (2007). Dynamic regulation of histone lysine methylation by demethylases. Mol. Cell 25, 1-14. https://doi.org/10.1016/j.molcel.2006.12.010
  29. Wellmann, S., Bettkober, M., Zelmer, A., Seeger, K., Faigle, M., Eltzschig, H.K., and Buhrer, C. (2008). Hypoxia upregulates the histone demethylase JMJD1A via HIF-1. Biochem. Biophys. Res. Commun. 372, 892-897. https://doi.org/10.1016/j.bbrc.2008.05.150
  30. Woon Kim, Y., Kim, S., Geun Kim, C., and Kim, A. (2011). The distinctive roles of erythroid specific activator GATA-1 and NFE2 in transcription of the human fetal gamma-globin genes. Nucleic Acids Res. 39, 6944-6955. https://doi.org/10.1093/nar/gkr253
  31. Xia, X., and Kung, A.L. (2009). Preferential binding of HIF-1 to transcriptionally active loci determines cell-type specific response to hypoxia. Genome Biol. 10, R113. https://doi.org/10.1186/gb-2009-10-10-r113
  32. Xia, X., Lemieux, M.E., Li, W., Carroll, J.S., Brown, M., Liu, X.S., and Kung, A.L. (2009). Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc. Natl. Acad. Sci. USA 106, 4260-4265. https://doi.org/10.1073/pnas.0810067106

Cited by

  1. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases vol.7, pp.2, 2016, https://doi.org/10.14336/AD.2015.0929
  2. Transforming growth factor-β signaling enhancement by long-term exposure to hypoxia in a tumor microenvironment composed of Lewis lung carcinoma cells vol.106, pp.11, 2015, https://doi.org/10.1111/cas.12773
  3. Chromatin and oxygen sensing in the context of JmjC histone demethylases vol.462, pp.3, 2014, https://doi.org/10.1042/BJ20140754
  4. Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape vol.131, 2015, https://doi.org/10.1016/j.pneurobio.2015.05.001
  5. KDM6B histone demethylase is an epigenetic regulator of estrogen receptor β expression in human pleural mesothelioma vol.8, pp.9, 2016, https://doi.org/10.2217/epi-2016-0025
  6. Hypoxic reprograming of H3K27me3 and H3K4me3 at the INK4A locus vol.590, pp.19, 2016, https://doi.org/10.1002/1873-3468.12375
  7. Iron and restless legs syndrome: treatment, genetics and pathophysiology vol.31, 2017, https://doi.org/10.1016/j.sleep.2016.07.028
  8. HIF activation causes synthetic lethality between the VHL tumor suppressor and the EZH1 histone methyltransferase vol.9, pp.398, 2017, https://doi.org/10.1126/scitranslmed.aal5272
  9. Hypoxic repression of CYP7A1 through a HIF-1α- and SHP-independent mechanism vol.49, pp.3, 2016, https://doi.org/10.5483/BMBRep.2016.49.3.188
  10. Advances and challenges in understanding histone demethylase biology vol.33, 2016, https://doi.org/10.1016/j.cbpa.2016.06.021
  11. HIF-1α coordinates epigenetic activation of SIAH1 in hepatocytes in response to nutritional stress vol.1860, pp.10, 2017, https://doi.org/10.1016/j.bbagrm.2017.08.002
  12. Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia vol.594, pp.6, 2016, https://doi.org/10.1113/JP271502
  13. 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process vol.72, pp.20, 2015, https://doi.org/10.1007/s00018-015-1978-z
  14. The Activity of JmjC Histone Lysine Demethylase KDM4A is Highly Sensitive to Oxygen Concentrations vol.12, pp.4, 2017, https://doi.org/10.1021/acschembio.6b00958
  15. Hypoxia and Inflammation in Cancer, Focus on HIF and NF-κB vol.5, pp.2, 2017, https://doi.org/10.3390/biomedicines5020021
  16. Regulation of histone demethylase KDM6B by hypoxia-inducible factor-2  vol.47, pp.2, 2015, https://doi.org/10.1093/abbs/gmu122
  17. Epigenetic regulation by histone demethylases in hypoxia vol.7, pp.5, 2015, https://doi.org/10.2217/epi.15.24
  18. Histone demethylase Jumonji D3 (JMJD3/KDM6B) at the nexus of epigenetic regulation of inflammation and the aging process vol.92, pp.10, 2014, https://doi.org/10.1007/s00109-014-1182-x
  19. Hypoxia-inducible factor-1α promotes glomerulosclerosis and regulates COL1A2 expression through interactions with Smad3 vol.90, pp.4, 2016, https://doi.org/10.1016/j.kint.2016.05.026
  20. Metabolism and epigenetics in the nervous system: Creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases vol.1628, 2015, https://doi.org/10.1016/j.brainres.2015.07.030
  21. Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3K27me3 vol.9, pp.1, 2016, https://doi.org/10.1186/s13072-016-0086-0
  22. VHL and Hypoxia Signaling: Beyond HIF in Cancer vol.6, pp.1, 2018, https://doi.org/10.3390/biomedicines6010035
  23. Norisoboldine, a natural AhR agonist, promotes Treg differentiation and attenuates colitis via targeting glycolysis and subsequent NAD+/SIRT1/SUV39H1/H3K9me3 signaling pathway vol.9, pp.3, 2018, https://doi.org/10.1038/s41419-018-0297-3
  24. Histone demethylase JMJD3 regulates fibroblast-like synoviocyte-mediated proliferation and joint destruction in rheumatoid arthritis vol.32, pp.7, 2018, https://doi.org/10.1096/fj.201701483R
  25. Notch-effector CSL promotes squamous cell carcinoma by repressing histone demethylase KDM6B vol.128, pp.6, 2018, https://doi.org/10.1172/JCI96915
  26. Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses vol.233, pp.9, 2018, https://doi.org/10.1002/jcp.26497
  27. The Emerging Role of Histone Demethylases in Renal Cell Carcinoma vol.4, pp.2, 2014, https://doi.org/10.15586/jkcvhl.2017.56
  28. Identification of the histone lysine demethylase KDM4A/JMJD2A as a novel epigenetic target in M1 macrophage polarization induced by oxidized LDL vol.8, pp.70, 2014, https://doi.org/10.18632/oncotarget.17748
  29. Atypical fetal development: Fetal alcohol syndrome, nutritional deprivation, teratogens, and risk for neurodevelopmental disorders and psychopathology vol.30, pp.3, 2014, https://doi.org/10.1017/s0954579418000500
  30. Critical role of histone demethylase Jumonji domain-containing protein 3 in the regulation of neointima formation following vascular injury vol.114, pp.14, 2014, https://doi.org/10.1093/cvr/cvy176
  31. Biochemical and Epigenetic Insights into L-2-Hydroxyglutarate, a Potential Therapeutic Target in Renal Cancer vol.24, pp.24, 2014, https://doi.org/10.1158/1078-0432.ccr-18-1727
  32. Comprehensive Metabolomic Analysis of IDH1R132H Clinical Glioma Samples Reveals Suppression of β-oxidation Due to Carnitine Deficiency vol.9, pp.None, 2014, https://doi.org/10.1038/s41598-019-46217-5
  33. Oxygen Regulates Human Pluripotent Stem Cell Metabolic Flux vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/8195614
  34. The Critical Role of Hypoxic Microenvironment and Epigenetic Deregulation in Esophageal Cancer Radioresistance vol.10, pp.11, 2014, https://doi.org/10.3390/genes10110927
  35. JMJD3 in the regulation of human diseases vol.10, pp.12, 2014, https://doi.org/10.1007/s13238-019-0653-9
  36. Puerarin 6″‐O‐xyloside suppressed HCC via regulating proliferation, stemness, and apoptosis with inhibited PI3K/AKT/mTOR vol.9, pp.17, 2014, https://doi.org/10.1002/cam4.3285
  37. Hypoxic Regulation of Gene Transcription and Chromatin: Cause and Effect vol.21, pp.21, 2020, https://doi.org/10.3390/ijms21218320
  38. Hypoxia-Mediated Regulation of Histone Demethylases Affects Angiogenesis-Associated Functions in Endothelial Cells vol.40, pp.11, 2020, https://doi.org/10.1161/atvbaha.120.315214
  39. Coalescing lessons from oxygen sensing, tumor metabolism, and epigenetics to target VHL loss in kidney cancer vol.67, pp.2, 2014, https://doi.org/10.1016/j.semcancer.2020.03.012
  40. The Role of 2-Oxoglutarate Dependent Dioxygenases in Gliomas and Glioblastomas: A Review of Epigenetic Reprogramming and Hypoxic Response vol.11, pp.None, 2014, https://doi.org/10.3389/fonc.2021.619300
  41. Androgens regulate ovarian gene expression by balancing Ezh2-Jmjd3 mediated H3K27me3 dynamics vol.17, pp.3, 2014, https://doi.org/10.1371/journal.pgen.1009483
  42. Signalling and putative therapeutic molecules on the regulation of synoviocyte signalling in rheumatoid arthritis vol.10, pp.4, 2021, https://doi.org/10.1302/2046-3758.104.bjr-2020-0331.r1
  43. To breathe or not to breathe: Understanding how oxygen sensing contributes to age-related phenotypes vol.67, pp.None, 2021, https://doi.org/10.1016/j.arr.2021.101267
  44. Exposomes to Exosomes: Exosomes as Tools to Study Epigenetic Adaptive Mechanisms in High-Altitude Humans vol.18, pp.16, 2014, https://doi.org/10.3390/ijerph18168280
  45. Lysine demethylase KDM6B regulates HIF-1α-mediated systemic and cellular responses to intermittent hypoxia vol.53, pp.9, 2014, https://doi.org/10.1152/physiolgenomics.00045.2021