참고문헌
- Botta, B., Menendez, P., Zappia, G., de Lima, R.A., Torge, R., and Monachea, G.D. (2009). Prenylated Isoflavonoids: Botanical distribution, structures, biological activities and biotechnological studies. An update (1995-2006). Curr. Med. Chem. 16, 3414-3468. https://doi.org/10.2174/092986709789057662
- Dewick, P.M. (1993). The flavonoids, advances in research since 1986. In Isoflavonoids, J.B. Harbone, ed. (London: Chapman and Hall), pp. 117-238.
- Di Carlo, G., Mascolo, N., Izzo, A.A., and Capasso, F. (1999). Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci. 65, 337-353. https://doi.org/10.1016/S0024-3205(99)00120-4
- Gurung, R.B., Kim, E.H., Oh, T.J., and Sohng, J.K. (2013). Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13. Mol. Cells 36, 1-10. https://doi.org/10.1007/s10059-013-0139-1
- Hoikkala, A., Mustonen, E., Saastamoinen, I., Jokela, T., Taponen, J., Saloniemi, H., and Wahala, K. (2007). High levels of equol in organic skimmed Finnish cow milk. Mol. Nutr. Food Res. 51, 782-786. https://doi.org/10.1002/mnfr.200600222
- Hopwood, D.A., Malpartida, F., Kieser, H.M., Ikeda, H., Duncan, J., Fujii, I., Rudd, B.A.M., Floss, H.G., and Omura, S. (1985). Production of "hybrid" antibiotics by genetic engineering. Nature 314, 642-644. https://doi.org/10.1038/314642a0
- Horinouchi, S. (2008). Combinatorial biosynthesis of non-bacterial and unnatural flavonoids, stilbenoids and curcuminoids by microorganisms. J. Antibiot. (Tokyo) 61, 709-728. https://doi.org/10.1038/ja.2008.85
- Julsing, M.K., Koulman, A., Woerdenbag, H.J., Quax, W.J., and Kayser, O. (2006). Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol. Eng. 23, 265-279. https://doi.org/10.1016/j.bioeng.2006.08.001
- Kren, V., and Martinkova, L. (2001). Glycosides in medicine: "The role of glycosidic residue in biological activity". Curr. Med. Chem. 8, 1303-1328. https://doi.org/10.2174/0929867013372193
-
Kim, B., Choi, J.S., Yi, E.H., Lee, J., Won, C., Ye, S., and Kim, M. (2013). Relative antioxidant activities of quercetin and its structurally related substances and their effects on NF-
${\kappa}B$ /CRE/AP-1 signalling in murine macrophages. Mol. Cells 35, 410-420. https://doi.org/10.1007/s10059-013-0031-z - Lapcik, O. (2007). Isoflavonoids in non-leguminous tax: a rarity or a rule? Phytochemistry 68, 2909-2916. https://doi.org/10.1016/j.phytochem.2007.08.006
- Malla, S., Pandey, R.P., Kim, B.G., and Sohng, J.K. (2013). Regiospecific modifications of naringenin for astragalin production in Escherichia coli. Biotechnol. Bioeng. 110, 2525-2535. https://doi.org/10.1002/bit.24919
- McDaniel, R., Thamchaipenet, A., Gustafsson, C., Fu, H., Betlach, M., and Ashley, G. (1999). Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel "unnatural" natural products. Proc. Natl. Acad. Sci. USA 96, 1846-1851. https://doi.org/10.1073/pnas.96.5.1846
- Pandey, R.P., and Sohng, J.K. (2013). Genetics of flavonoids. In Hand Book of Natural Products, Phytochemistry, Botany and Metabolism, K.G. Ramawat, and J.M. Merillon, eds. (Berlin Heidelberg: Springer-Verlag), pp.1617-1645.
- Pandey, R.P., Li, T.F., Kim, E.H., Yamaguchi, T., Park, Y.I., Kim, J.S., and Sohng, J.K. (2013a). Enzymatic synthesis of novel phloretin glucosides. Appl. Environ. Microbiol. 79, 3516-3521. https://doi.org/10.1128/AEM.00409-13
- Pandey, R.P., Parajuli, P., Koirala, N., Park, J.W., and Sohng, J.K. (2013b). Probing 3-hydroxyflavone for in vitro glycorandomization of flavonols by YjiC. Appl. Environ. Microbiol. 79, 6833-6838. https://doi.org/10.1128/AEM.02057-13
- Pandey, R.P., Malla, S., Simkhada, D., Kim, B.G., and Sohng, J.K. (2013c). Production of 3-O-xylosyl quercetin in Escherichia coli. Appl. Microbiol. Biotechnol. 97, 1889-1901. https://doi.org/10.1007/s00253-012-4438-9
- Samuelsson, G., and Bohlin, L. (2001). Drugs of Natural Origin: A textbook of pharmacognosy. (Stockholm: Swedish Pharmaceutical Press).
- Stupp, G.S., von Reuss, S.H., Izrayelit, Y., Ajredini, R., Schroeder, F.C., and Edison, A.S. (2013). Chemical detoxification of small molecules by Caenorhabditis elegans. ACS Chem. Biol. 15, 309-313.
- Veitch, N.C. (2007). Isoflavonoids of the Leguminosae. Nat. Prod. Rep. 24, 417-464. https://doi.org/10.1039/b511238a
- Veitch, N.C. (2013). Isoflavonoids of the Leguminosae. Nat. Prod. Rep. 30, 988-1027. https://doi.org/10.1039/c3np70024k
- Ververidis, F., Trantas, E., Douglas, C., Vollmer, G., Kretzschmar, G., and Panopoulos, N. (2007). Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part II: Reconstitution of multienzyme pathways in plants and microbes. Biotechnol. J. 2, 1235-1249. https://doi.org/10.1002/biot.200700184
- Vogt, T., and Jones, P. (2000). Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci. 5, 380-386. https://doi.org/10.1016/S1360-1385(00)01720-9
- Wang, X. (2010). Structural studies and mechanisms of isoflavonoid biosynthesis. In Isoflavones Biosynthesis, Occurance and Health Effects. M.J. Thompson, ed. (New York: Nova Science Publishers Inc.), pp. 239-254.
- Wang, X. (2011). Structure, function, and engineering of enzymes in isoflavonoid biosynthesis. Funct. Integr. Genomics 11, 13-22. https://doi.org/10.1007/s10142-010-0197-9
- Weymouth-Wilson, A.C. (1997). The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 14, 99-110. https://doi.org/10.1039/np9971400099
- Williams, G.J., Yang, J., Zhang, C., and Thorson, J.S. (2011). Recombinant E. coli prototype strains for in vivo glycorandomization. ACS Chem. Biol. 6, 95-100. https://doi.org/10.1021/cb100267k
- Wu, C.Z., Jang, J.H., Woo, M., Ahn, J.S., Kim, J.S., and Hong, Y.S. (2012) Enzymatic glycosylation of non-benzoquinone geldanamycin analogs via Bacillus UDP-glycosyltransferase. Appl. Environ. Microbiol. 78, 7680-7686. https://doi.org/10.1128/AEM.02004-12
피인용 문헌
- Donor specificity of YjiC glycosyltransferase determines the conjugation of cytosolic NDP-sugar in in vivo glycosylation reactions vol.91, 2016, https://doi.org/10.1016/j.enzmictec.2016.05.006
- When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts vol.6, 2015, https://doi.org/10.3389/fpls.2015.00007
- In vitro single-vessel enzymatic synthesis of novel Resvera-A glucosides vol.424, 2016, https://doi.org/10.1016/j.carres.2016.02.001
- Enzymatic synthesis of novel isobavachalcone glucosides via a UDP-glycosyltransferase vol.38, pp.12, 2015, https://doi.org/10.1007/s12272-015-0658-8
- Identification of key active constituents of Buchang Naoxintong capsules with therapeutic effects against ischemic stroke by using an integrative pharmacology-based approach vol.12, pp.1, 2016, https://doi.org/10.1039/C5MB00460H
- Recent progress in the enzymatic glycosylation of phenolic compounds vol.35, pp.1, 2016, https://doi.org/10.1080/07328303.2015.1137580
- Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology vol.34, pp.5, 2016, https://doi.org/10.1016/j.biotechadv.2016.02.012
- Biosynthesis of a novel fisetin glycoside from engineered Escherichia coli vol.43, 2016, https://doi.org/10.1016/j.jiec.2016.07.054
- Enzymatic glycosylation of the topical antibiotic mupirocin vol.31, pp.8, 2014, https://doi.org/10.1007/s10719-014-9538-6
- Development of an in vivo glucosylation platform by coupling production to growth: Production of phenolic glucosides by a glycosyltransferase ofVitis vinifera vol.112, pp.8, 2015, https://doi.org/10.1002/bit.25570
- Recent developments in the enzymatic O-glycosylation of flavonoids vol.100, pp.10, 2016, https://doi.org/10.1007/s00253-016-7465-0
- OleD Loki as a Catalyst for Tertiary Amine and Hydroxamate Glycosylation vol.18, pp.4, 2017, https://doi.org/10.1002/cbic.201600676
- Synthetic analog of anticancer drug daunorubicin from daunorubicinone using one-pot enzymatic UDP-recycling glycosylation vol.124, 2016, https://doi.org/10.1016/j.molcatb.2015.11.020
- Microbial production of value-added nutraceuticals vol.37, 2016, https://doi.org/10.1016/j.copbio.2015.11.003
- Biotechnological advances in UDP-sugar based glycosylation of small molecules vol.33, pp.2, 2015, https://doi.org/10.1016/j.biotechadv.2015.02.005
- Donor substrate flexibility study of AtUGT89C1, a glycosyltransferase from Arabidopsis thaliana vol.35, pp.7, 2016, https://doi.org/10.1080/07328303.2016.1251941
- Mining of efficient microbial UDP-glycosyltransferases by motif evolution cross plant kingdom for application in biosynthesis of salidroside vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-00568-z
- Uncovering a Glycosyltransferase Provides Insights into the Glycosylation Step during Macrolactin and Bacillaene Biosynthesis vol.15, pp.18, 2014, https://doi.org/10.1002/cbic.201402384
- Engineering a Carbohydrate-processing Transglycosidase into Glycosyltransferase for Natural Product Glycodiversification vol.6, pp.1, 2016, https://doi.org/10.1038/srep21051
- Biosynthesis of natural and non-natural genistein glycosides vol.7, pp.26, 2017, https://doi.org/10.1039/C6RA28145A
- Enzymatic synthesis of novel corylifol A glucosides via a UDP-glycosyltransferase vol.446-447, 2017, https://doi.org/10.1016/j.carres.2017.05.002
- Flavanone and isoflavone glucosylation by non-Leloir glycosyltransferases vol.233, 2016, https://doi.org/10.1016/j.jbiotec.2016.06.026
- Enzymatic Biosynthesis of Novel Resveratrol Glucoside and Glycoside Derivatives vol.80, pp.23, 2014, https://doi.org/10.1128/AEM.02076-14
- Metabolic engineering of microorganisms for production of aromatic compounds vol.18, pp.1, 2019, https://doi.org/10.1186/s12934-019-1090-4
- Glucosylation of Resveratrol Improves its Immunomodulating Activity and the Viability of Murine Macrophage RAW 264.7 Cells vol.45, pp.1, 2014, https://doi.org/10.4014/mbl.1611.11001
- One-Pot Multienzyme Cofactors Recycling (OPME-CR) System for Lactose and Non-natural Saccharide Conjugated Polyphenol Production vol.66, pp.30, 2014, https://doi.org/10.1021/acs.jafc.8b02421
- Metabolic engineering of glycosylated polyketide biosynthesis vol.2, pp.3, 2018, https://doi.org/10.1042/etls20180011
- Biocatalytic Synthesis of Non-Natural Monoterpene O-Glycosides Exhibiting Superior Antibacterial and Antinematodal Properties vol.4, pp.5, 2014, https://doi.org/10.1021/acsomega.9b00535
- Bacillus licheniformis escapes from Myxococcus xanthus predation by deactivating myxovirescin A through enzymatic glucosylation vol.21, pp.12, 2014, https://doi.org/10.1111/1462-2920.14817
- Plant Glycosides and Glycosidases: A Treasure-Trove for Therapeutics vol.11, pp.None, 2014, https://doi.org/10.3389/fpls.2020.00357
- Metabolic engineering for glycoglycerolipids production in E. coli: Tuning phosphatidic acid and UDP-glucose pathways vol.61, pp.None, 2014, https://doi.org/10.1016/j.ymben.2020.05.010
- Synthetic Studies towards Fungal glycosides: An Overview vol.24, pp.24, 2014, https://doi.org/10.2174/1385272824999201105160034
- Targeted metabolomics unveil alteration in accumulation and root exudation of flavonoids as a response to interspecific competition vol.16, pp.1, 2014, https://doi.org/10.1080/17429145.2021.1881176