DOI QR코드

DOI QR Code

Inhibition of GM3 Synthase Attenuates Neuropathology of Niemann-Pick Disease Type C by Affecting Sphingolipid Metabolism

  • Lee, Hyun (Stem Cell Neuroplasticity Research Group, Kyungpook National University) ;
  • Lee, Jong Kil (Stem Cell Neuroplasticity Research Group, Kyungpook National University) ;
  • Bae, Yong Chul (Department of Oral Anatomy and Neurobiology, Kyungpook National University) ;
  • Yang, Song Hyun (Institute of Metabolism, Green Cross Reference Laboratory) ;
  • Okino, Nozomu (Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University) ;
  • Schuchman, Edward H. (Department of Genetics and Genomic Sciences & Gene and Cell Therapy, Mount Sinai School of Medicine) ;
  • Yamashita, Tadashi (World Class University Program, Kyungpook National University) ;
  • Bae, Jae-Sung (Stem Cell Neuroplasticity Research Group, Kyungpook National University) ;
  • Jin, Hee Kyung (Stem Cell Neuroplasticity Research Group, Kyungpook National University)
  • Received : 2013.11.21
  • Accepted : 2013.12.18
  • Published : 2014.02.28

Abstract

In several lysosomal storage disorders, including Niemann-Pick disease Type C (NP-C), sphingolipids, including glycosphingolipids, particularly gangliosides, are the predominant storage materials in the brain, raising the possibility that accumulation of these lipids may be involved in the NP-C neurodegenerative process. However, correlation of these accumulations and NP-C neuropathology has not been fully characterized. Here we derived NP-C mice with complete and partial deletion of the Siat9 (encoding GM3 synthase) gene in order to investigate the role of ganglioside in NP-C pathogenesis. According to our results, NP-C mice with homozygotic deletion of GM3 synthase exhibited an enhanced neuropathological phenotype and died significantly earlier than NP-C mice. Notably, in contrast to complete depletion, NP-C mice with partial deletion of the GM3 synthase gene showed ameliorated NP-C neuropathology, including motor disability, demyelination, and abnormal accumulation of cholesterol and sphingolipids. These findings indicate the crucial role of GM3 synthesis in the NP-C phenotype and progression of CNS pathologic abnormality, suggesting that well-controlled inhibition of GM3 synthesis could be used as a therapeutic strategy.

Keywords

References

  1. Ariga, T., Miyatake, T., and Yu, R.K. (2001). Recent studies on the roles of antiglycosphingolipids in the pathogenesis of neurological disorders. J. Neurosci. Res. 65, 363-370. https://doi.org/10.1002/jnr.1162
  2. Brunetti-Pierri, N., and Scaglia, F. (2008). GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol. Genet. Metab. 94, 391-396. https://doi.org/10.1016/j.ymgme.2008.04.012
  3. Campbell, M.J., and Morrison, J.H. (1989). Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J. Comp. Neurol. 282, 191-205. https://doi.org/10.1002/cne.902820204
  4. Chen, Y., Balasubramaniyan, V., Peng, J., Hurlock, E.C., Tallquist, M., Li, J., and Lu, Q.R. (2007). Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat. Protoc. 2, 1044-1051. https://doi.org/10.1038/nprot.2007.149
  5. Di Rocco, M., Dardis, A., Madeo, A., Barone, R., and Fiumara, A. (2012). Early miglustat therapy in infantile Niemann-Pick disease type C. Pediatr. Neurol. 47, 40-43. https://doi.org/10.1016/j.pediatrneurol.2012.04.005
  6. Fishman, P.H., and Brady, R.O. (1976). Biosynthesis and function of gangliosides. Science 194, 906-915. https://doi.org/10.1126/science.185697
  7. Futerman, A.H., and van Meer, G. (2004). The cell biology of lysosomal storage disorders. Nat. Rev. Mol. Cell. Biol. 5, 554-565.20. https://doi.org/10.1038/nrm1423
  8. German, D.C., Liang, C.L., Song, T., Yazdani, U., Xie, C., and Dietschy, J.M. (2002). Neurodegeneration in the Niemann-Pick C mouse: glial involvement. Neuroscience 109, 437-450. https://doi.org/10.1016/S0306-4522(01)00517-6
  9. Gondre-Lewis, M.C., McGlynn, R., and Walkley, S.U. (2003). Cholesterol accumulation in NPC1-deficient neurons is ganglioside dependent. Curr. Biol. 13, 1324-1329. https://doi.org/10.1016/S0960-9822(03)00531-1
  10. Hayashi, H., Kimura, N., Yamaguchi, H., Hasegawa, K., Yokoseki, T., Shibata, M., Yamamoto, N., Michikawa, M., Yoshikawa, Y., Terao, K., et al. (2004). A seed for Alzheimer amyloid in the brain. J. Neurosci. 24, 4894-4902. https://doi.org/10.1523/JNEUROSCI.0861-04.2004
  11. He, X., Dagan, A., Gatt, S., and Schuchman, E.H. (2005). Simultaneous quantitative analysis of ceramide and sphingosine in mouse blood by naphthalene-2,3-dicarboxyaldehyde derivatization after hydrolysis with ceramidase. Anal. Biochem. 340, 113-122. https://doi.org/10.1016/j.ab.2005.01.058
  12. Karimzadeh, P., Tonekaboni, S.H., Ashrafi, M.R., Shafeghati, Y., Rezayi, A., Salehpour, S., Ghofrani, M., Taghdiri, M.M., Rahmanifar, A., Zaman, T., et al. (2013). Effects of miglustat on stabilization of neurological disorder in niemann-pick disease type C: iranian pediatric case series. J. Child Neuol. 28, 1599-1606.
  13. Lachmann, R.H., te Vruchte, D., Lloyd-Evans, E., Reinkensmeier, G., Sillence, D.J., Fernandez-Guillen, L., Dwek, R.A., Butters, T.D., Cox, T.M., and Platt, F.M. (2004). Treatment with miglustat reverses the lipid-trafficking defect in Niemann-Pick disease type C. Neurobiol. Dis. 16, 654-658. https://doi.org/10.1016/j.nbd.2004.05.002
  14. Lee, H., Lee, J.K., Min, W.K., Bae, J.H., He, X., Schuchman, E.H., Bae, J.S., and Jin, H.K. (2010). Bone marrow-derived mesenchymal stem cells prevent the loss of Niemann-Pick type C mouse Purkinje neurons by correcting sphingolipid metabolism and increasing sphingosine-1-phosphate. Stem Cells 28, 821-831. https://doi.org/10.1002/stem.401
  15. Lehmann, F., Wegerhoff, R., Rosenberg, A., Schauer, R., and Kohla, G. (2003). Early variations of the disialoganglioside GD3 in chicken embryonic brain support its role in cell migration. Biochimie 85, 449-454. https://doi.org/10.1016/S0300-9084(03)00077-4
  16. Liu, B., Turley, S.D., Burns, D.K., Miller, A.M., Repa, J.J., and Dietschy, J.M. (2009). Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1-/- mouse. Proc. Natl. Acad. Sci. USA 106, 2377-2382. https://doi.org/10.1073/pnas.0810895106
  17. Loftus, S.K., Morris, J.A., Carstea, E.D., Gu, J.Z., Cummings, C., Brown, A., Ellison, J., Ohno, K., Rosenfeld, M.A., Tagle, D.A., et al. (1997). Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 277, 232-235. https://doi.org/10.1126/science.277.5323.232
  18. Paciorkowski, A.R., Westwell, M., Ounpuu, S., Bell, K., Kagan, J., Mazzarella, C., and Greenstein, R.M. (2008). Motion analysis of a child with Niemann-Pick disease type C treated with miglustat. Movement Disord. 23, 124-128. https://doi.org/10.1002/mds.21779
  19. Ridgway, N.D. (2000). Interactions between metabolism and intracellular distribution of cholesterol and sphingomyelin. Biochim. Biophys. Acta 1484, 129-141. https://doi.org/10.1016/S1388-1981(00)00006-8
  20. Rosenbaum, A.I., and Maxfield, F.R. (2011). Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J. Neurochem. 116, 789-795. https://doi.org/10.1111/j.1471-4159.2010.06976.x
  21. Runz, H., Dolle, D., Schlitter, A.M., and Zschocke, J. (2008). NPCdb, a Niemann-Pick type C disease gene variation database. Hum. Mutat. 29, 345-350. https://doi.org/10.1002/humu.20636
  22. Saadat, L., Dupree, J.L., Kilkus, J., Han. X., Traka, M., Proia, R.L., Dawson, G., and Popko, B. (2010). Absence of oligodendroglial glucosylceramide synthesis does not result in CNS myelin abnormalities or alter the dysmyelinating phenotype of CGT-deficient mice. Glia 58, 391-398. https://doi.org/10.1002/glia.20930
  23. Shevchuk, N.A., Hathout, Y., Epifano, O., Su, Y., Liu, Y., Sutherland, M., and Ladisch, S. (2007). Alteration of ganglioside synthesis by GM3 synthase knockout in murine embryonic fibroblasts. Biochim. Biophys. Acta 1771, 1226-1234. https://doi.org/10.1016/j.bbalip.2007.05.008
  24. Simons, K., and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387, 569-572. https://doi.org/10.1038/42408
  25. Skorpen, J., Helland, I.B., and Tennoe, B. (2012). Use of miglustat in a child with late-infantile-onset Niemann-Pick disease type C and frequent seizures: a case report. J. Med. Case Rep. 6, 383. https://doi.org/10.1186/1752-1947-6-383
  26. Sonnino, S., Mauri, L., Chigorno, V., Mauri, L., Chigorno, V., and Prinetti, A. (2007). Gangliosides as components of lipid membrane domains. Glycobiology 17, 1R-13R. https://doi.org/10.1093/glycob/cwm030
  27. Stein, V.M., Crooks, A., Ding, W., Prociuk, M., O'Donnell, P., Bryan, C., Sikora, T., Dingemanse, J., Vanier, M.T., Walkley, S.U., et al. (2012). Miglustat improves purkinje cell survival and alters microglial phenotype in feline Niemann-Pick disease type C. J. Neuropathol. Exp. Neurol. 71, 434-448. https://doi.org/10.1097/NEN.0b013e31825414a6
  28. Takikita, S., Fukuda, T., Mohri, I., Yagi, T., and Suzuki, K. (2004). Perturbed myelination process of premyelinating oligodendrocyte in Niemann-Pick type C mouse. J. Neuropath. Exp. Neur. 63, 660-673. https://doi.org/10.1093/jnen/63.6.660
  29. Tamura, H., Takahashi, T., Ban, N., Torisu, H., Ninomiya, H., Takada, G., and Inagaki, N. (2006). Niemann-Pick type C disease: novel NPC1 mutations and characterization of the concomitant acid sphingomyelinase deficiency. Mol. Genet. Metab. 87, 113-121. https://doi.org/10.1016/j.ymgme.2005.07.025
  30. Vanier, M.T. (2010). Niemann-Pick disease type C. Orphanet. J. Rare. Dis. 5, 16. https://doi.org/10.1186/1750-1172-5-16
  31. Vanier, M.T., Duthel, S., Rodriguez-Lafrasse, C., Pentchev, P., and Carstea, E.D. (1996). Genetic heterogeneity in Niemann-Pick C disease: a study using somatic cell hybridization and linkage analysis. Am. J. Hum. Genet. 58, 118-125.
  32. Walkley, S.U., Siegel, D.A., Dobrenis, K., and Zervas, M. (1998). GM2 ganglioside as a regulator of pyramidal neuron dendritogenesis. Ann. N.Y. Acad. Sci. 845, 188-199. https://doi.org/10.1111/j.1749-6632.1998.tb09671.x
  33. Walkley, S.U., Zervas, M., and Wiseman, S. (2000). Gangliosides as modulators of dendritogenesis in normal and storage diseaseaffected pyramidal neurons. Cereb. Cortex 10, 1028-1037. https://doi.org/10.1093/cercor/10.10.1028
  34. Xu, Y.H., Barnes, S., Sun, Y., and Grabowski, G.A. (2010). Multisystem disorders of glycosphingolipid and ganglioside metabolism. J. Lipid Res. 51, 1643-1675. https://doi.org/10.1194/jlr.R003996
  35. Yang, T., Knowles, J.K., Lu, Q., Zhang, H., Arancio, O., Moore, L.A., Chang, T., Wang, Q., Andreasson, K., Rajadas, J., et al. (2008). Small molecule, non-peptide p75 ligands inhibit Abeta-induced neurodegeneration and synaptic impairment. PLoS One 3, e3604. https://doi.org/10.1371/journal.pone.0003604
  36. Yamashita, T., Hashiramoto, A., Haluzik, M., Mizukami, H., Beck, S., Norton, A., Kono, M., Tsuji, S., Daniotti, J.L., Werth, N., et al. (2003). Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc. Natl. Acad. Sci. USA 100, 3445-3449. https://doi.org/10.1073/pnas.0635898100
  37. Yoshikawa, M., Go, S., Takasaki, K., Kakazu, Y., Ohashi, M., Nagafuku, M., Kabayama, K., Sekimoto, J., Suzuki, S., Takaiwa, K., et al. (2009). Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc. Natl. Acad. Sci. USA 106, 9483-9488. https://doi.org/10.1073/pnas.0903279106
  38. Yu, R.K., Nakatani, Y., and Yanagisawa, M. (2009). The role of glycosphingolipid metabolism in the developing brain. J. Lipid Res. 50 Suppl, S440-445. https://doi.org/10.1194/jlr.R800028-JLR200
  39. Zervas, M., Dobrenis, K., and Walkley, S.U. (2001a). Neurons in Niemann-Pick disease type C accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations. J. Neuropath. Exp. Neur. 60, 49-64. https://doi.org/10.1093/jnen/60.1.49
  40. Zervas, M., Somers, K.L., Thrall, M.A., and Walkley, S.U. (2001b). Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr. Biol. 11, 1283-1287. https://doi.org/10.1016/S0960-9822(01)00396-7

Cited by

  1. Severe demyelination in a patient with a late infantile form of Niemann-Pick disease type C 2017, https://doi.org/10.1111/neup.12380
  2. Increased Expression of GM1 Detected by Electrospray Mass Spectrometry in Rat Primary Embryonic Cortical Neurons Exposed to Glutamate Toxicity vol.88, pp.15, 2016, https://doi.org/10.1021/acs.analchem.6b01940
  3. Evidence that small molecule enhancement of β-hexosaminidase activity corrects the behavioral phenotype in Dutch APPE693Q mice through reduction of ganglioside-bound Aβ vol.20, pp.1, 2015, https://doi.org/10.1038/mp.2014.135
  4. Cholesterol-dependent increases in glucosylceramide synthase activity in Niemann-Pick disease type C model cells: Abnormal trafficking of endogenously formed ceramide metabolites by inhibition of the enzyme vol.110, 2016, https://doi.org/10.1016/j.neuropharm.2016.08.011
  5. Lysosomal Leukodystrophies Lysosomal Storage Diseases Associated With White Matter Abnormalities pp.1708-8283, 2019, https://doi.org/10.1177/0883073819828587
  6. Niemann–Pick type C disease: cellular pathology and pharmacotherapy vol.153, pp.6, 2014, https://doi.org/10.1111/jnc.14895
  7. Understanding and Treating Niemann–Pick Type C Disease: Models Matter vol.21, pp.23, 2014, https://doi.org/10.3390/ijms21238979
  8. The rapidly evolving view of lysosomal storage diseases vol.13, pp.2, 2014, https://doi.org/10.15252/emmm.202012836