DOI QR코드

DOI QR Code

Nuclear Localization Signals in Prototype Foamy Viral Integrase for Successive Infection and Replication in Dividing Cells

  • Hossain, Md. Alamgir (Department of Biotechnology, Chung-Ang University) ;
  • Ali, Md. Khadem (Department of Biotechnology, Chung-Ang University) ;
  • Shin, Cha-Gyun (Department of Biotechnology, Chung-Ang University)
  • Received : 2013.11.08
  • Accepted : 2013.12.13
  • Published : 2014.02.28

Abstract

We identified four basic amino acid residues as nuclear localization signals (NLS) in the C-terminal domain of the prototype foamy viral (PFV) integrase (IN) protein that were essential for viral replication. We constructed seven point mutants in the C-terminal domain by changing the lysine and arginine at residues 305, 308, 313, 315, 318, 324, and 329 to threonine or proline, respectively, to identify residues conferring NLS activity. Our results showed that mutation of these residues had no effect on expression assembly, release of viral particles, or in vitro recombinant IN enzymatic activity. However, mutations at residues 305 (R ${\rightarrow}$ T), 313(R ${\rightarrow}$ T), 315(R ${\rightarrow}$ P), and 329(R ${\rightarrow}$ T) lead to the production of defective viral particles with loss of infectivity, whereas non-defective mutations at residues 308(R ${\rightarrow}$ T), 318(K ${\rightarrow}$ T), and 324(K ${\rightarrow}$ T) did not show any adverse effects on subsequent production or release of viral particles. Sub-cellular fractionation and immunostaining for viral protein PFV-IN and PFV-Gag localization revealed predominant cytoplasmic localization of PFV-IN in defective mutants, whereas cytoplasmic and nuclear localization of PFV-IN was observed in wild type and non-defective mutants. However sub-cellular localization of PFV-Gag resulted in predominant nuclear localization and less presence in the cytoplasm of the wild type and non-defective mutants. But defective mutants showed only nuclear localization of Gag. Therefore, we postulate that four basic arginine residues at 305, 313, 315 and 329 confer the karyoplilic properties of PFV-IN and are essential for successful viral integration and replication.

Keywords

References

  1. Achong, B.G., Mansell, P.W., Epstein, M.A., and Clifford. P. (1971). An unusual virus in cultures from a human nasopharyngeal carcinoma. J. Natl. Cancer Inst. 46, 299-307.
  2. Bouyac-Bertoia, M., Dvorin, J.D., Fouchier, R.A., Jenkins, Y., Meyer, B.E., Wu, L.I., Emerman, M., and Malim, M.H. (2001). HIV-1 infection requires a functional integrase NLS. Mol. Cell 7, 1025-1035. https://doi.org/10.1016/S1097-2765(01)00240-4
  3. Brown, P.O. (1997). Integration. In Retroviruses, J.M. Coffin, S.H., Hughes, and H.E. Varmus, eds. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press), pp. 161-204.
  4. Bukrinsky, M.I., Haggerty, S., Dempsey, M.P., Sharova, N., Adzhubel, A., Spitz, L., Lewis, P., Goldfarb, D., Emerman, M., and Stevenson, M. (1993). A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365, 666-669. https://doi.org/10.1038/365666a0
  5. Bushman, F.D., Fujiwara, T., and Craigie, R. (1990). Retroviral DNA integration directed by HIV integration protein in vitro. Science 249, 1555-1558. https://doi.org/10.1126/science.2171144
  6. Connor, R.I., Chen, B.K., Choe, S., Landau, N.R. (1995). Vpr is required for efficient replication of human immunodeficiency virus type 1 in mononuclear phagocytes. Virology 206, 935-944. https://doi.org/10.1006/viro.1995.1016
  7. Craigie, R. (2001). HIV integrase, a brief overview from chemistry to therapeutics. J. Biol. Chem. 276, 23213-23216. https://doi.org/10.1074/jbc.R100027200
  8. Emiliani, S., Mousnier, A., Busschots, K., Maroun, M., Maele, B., Tempe, D., Vandekerckhove, L., Moisant, F., Ben-Slama, L., Witvrouw, M., et al. (2005). Integrase mutants defective for interaction with LEDGE/ p75 are impaired in chromosome tethering and HIV-1 replication. J. Biol. Chem. 280, 25517-25523. https://doi.org/10.1074/jbc.M501378200
  9. Engelman, A. (1999). In vivo analysis of retroviral integrase structure and function. Adv .Virus Res. 52, 411-426. https://doi.org/10.1016/S0065-3527(08)60309-7
  10. Engelman, A., Mizuuchi, K., and Craigie, R. (1991). HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67, 1211-1221. https://doi.org/10.1016/0092-8674(91)90297-C
  11. Enssle, J., Moebes, A., Heinkelein, M., Panhuysen, M., Mauer, B., Schweizer, M., Neumann-Haefelin, D., and Rethwilm, A. (1999). An active foamy virus integrase is required for virus replication. J. Gen. Virol. 80, 1445-1452. https://doi.org/10.1099/0022-1317-80-6-1445
  12. Epstein, M.A. (2004). Simian retroviral infections in human beings. Lancet 364, 138-139. https://doi.org/10.1016/S0140-6736(04)16621-X
  13. Fassati, A. (2006). HIV infection of non-dividing cells: a divisive problem. Retrovirology 3, 74. https://doi.org/10.1186/1742-4690-3-74
  14. Fauquet, C.M., and Fargette, D. (2005). International Committee on Taxonomy of Viruses and the 3,142 unassigned species. Virol. J. 2, 64. https://doi.org/10.1186/1743-422X-2-64
  15. Gallay, P., Hope, T., Chin, D., and Trono, D. (1997). HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc. Natl. Acad. Sci. USA 94, 9825-9830. https://doi.org/10.1073/pnas.94.18.9825
  16. Gorlich, D., and Kutay, U. (1999). Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607-660. https://doi.org/10.1146/annurev.cellbio.15.1.607
  17. Heinzinger, N.K., Bukrinsky, M.L., Haggerty, S.A., Ragland, A.M., Kewalramani, V., Lee, M.A., Gendelman, H.E., Ratner, M., Stevenson, M., and Emerman, M. (1994). The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc. Natl. Acad. Sci. USA 91, 7311-7315. https://doi.org/10.1073/pnas.91.15.7311
  18. Herchenroder, O., Renne, R., Loncar, D., Cobb, E.K., Murthy, K.K., Schneider, J., Mergi, A., and Luciw, P.A. (1994). Isolation, cloning, and sequencing of simian foamy viruses from chimpanzees (SFVcpz): high homology to human foamy virus (HFV). Virology 201, 187-199. https://doi.org/10.1006/viro.1994.1285
  19. Holden, P., and Horton, W.A. (2009). Crude subcellular fractionation of cultured mammalian cell lines. BMC Res. Notes 2, 243. https://doi.org/10.1186/1756-0500-2-243
  20. Imrich, H., Heinkelein, M., Herchenroder, O., and Rethwilm, A. (2000). Primate foamy virus Pol proteins are imported into the nucleus. J. Gen. Virol. 81, 2941-2947. https://doi.org/10.1099/0022-1317-81-12-2941
  21. Kang, S.Y., Ahn, D.G., Lee, C., Lee, Y.S., and Shin, C.-G. (2008). Functional nucleotides of U5 LTR determining substrate specificity of prototype foamy virus integrase. J. Microbial. Biotechnol. 18, 1044-1049.
  22. Katz, R.A., Greger, J.G., and Skalka, A.M. (2002). Transduction of interphase cells by avian sarcoma virus. J. Virol. 76, 5422-5434. https://doi.org/10.1128/JVI.76.11.5422-5434.2002
  23. Katz, R.A., Greger, J.G., and Skalka, A.M. (2005). Effects of cell cycle status on early events in retroviral replication. J. Cell. Biochem. 94, 880-889. https://doi.org/10.1002/jcb.20358
  24. Kootstra, N.A., and Schuitemaker, H. (1999). Phenotype of HIV-1 lacking a functional nuclear localization signal in matrix protein of Gag and Vpr is comparable to wild-type HIV-1 in primary macrophages. Virology 253, 170-180. https://doi.org/10.1006/viro.1998.9482
  25. Kukolj, G., Jones, K.S., and Skalka, A.M. (1997). Subcellular localization of avian sarcoma virus and human immunodeficiency virus type 1 integrases. J. Virol. 71, 843-847.
  26. Lecellier, C.H, and Saib, A. (2000). Foamy viruses: between retroviruses and pararetroviruses. Virology 271, 1-8. https://doi.org/10.1006/viro.2000.0216
  27. Lee, H.S., Kang, S.Y., and Shin, C.-G. (2005). Characterization of the functional domains of human foamy virus integrase using chimeric integrases. Mol. Cells 19, 246-255.
  28. Linial, M.L. (1999). Foamy viruses are unconventional retroviruses. J. Virol. 73, 1747-1755.
  29. Linial, M.L. (2007). Foamy viruses. In Field Virology, D.M. Knipe and P.M. Howley, eds. (Philadelphia, PA: Lippincott Williams & Wilkins), pp. 2245-2262.
  30. Lo, Y.T., Tian, T., Nadeau, P.E., Park, J., and Mergia, A. (2010). The foamy virus genome remains unintegrated in the nuclei of G1/S phase-arrested cells, and integrase is critical for preintegration complex transport into the nucleus. J. Virol. 84, 2832-2842. https://doi.org/10.1128/JVI.02435-09
  31. Lochelt, M., and Flugel, R.M. (1996). The human foamy virus pol gene is expressed as a Pro-Pol polyprotein and not as a Gag-Pol fusion protein. J. Virol. 70, 1033-1040.
  32. Lochelt, M., Yu, S.F., Linial, M.L., and Flugel, R.M. (1995). The human foamy virus internal promoter is required for efficient gene expression and infectivity. Virology 206, 601-610. https://doi.org/10.1016/S0042-6822(95)80077-8
  33. Mahnke, C., Lochelt, M., Bannert, B., and Flugel, R.M. (1990). Specific enzyme-linked immunosorbent assay for the detection of antibodies to the human spumavirus. J. Virol. Methods 29, 13-22. https://doi.org/10.1016/0166-0934(90)90003-X
  34. Mattaj, I.W., and Englmeier, L. (1998). Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265-306. https://doi.org/10.1146/annurev.biochem.67.1.265
  35. Mergia, A., and Heinkelein, M. (2003). Foamy virus vectors. Curr. Top. Microbiol. Immunol. 277, 131-159.
  36. Miller, M.D., Farnet, C.M., and Bushman, F.D. (1997). Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J. Virol. 71, 5382-5390.
  37. Mullers, E., Stirnnagel, K., Kaulfuss, S., and Lindemann, D. (2011). Prototype foamy virus gag nuclear localization: a novel pathway among retroviruses. J. Virol. 85, 9276-9285. https://doi.org/10.1128/JVI.00663-11
  38. Patton, G.S., Erlwein, O., and McClure, M.O. 2004. Cell-cycle dependence of foamy virus vectors. J. Gen. Virol. 85, 2925-2930. https://doi.org/10.1099/vir.0.80210-0
  39. Pearl, L.H., and Taylor, W.R. (1987). A structural model for the retroviral proteases. Nature 329, 351-354. https://doi.org/10.1038/329351a0
  40. Petit, C., Schwartz, O., and Mammano, F. (2000). The karyophilic properties of human immunodeficiency virus type 1 integrase are not required for nuclear import of proviral DNA. J. Virol. 74, 7119-7126. https://doi.org/10.1128/JVI.74.15.7119-7126.2000
  41. Rethwilm, A. (1996). Unexpected replication pathways of foamy viruses. J. Acquir. Immune. Defic. Syndr. Hum. Retrovirol. 13 Suppl 1, S248-253. https://doi.org/10.1097/00042560-199600001-00037
  42. Rethwilm, A. (2005). Foamy viruses. In Virology, V.T. Meulen and B.W.J. Mahy, eds. (London, United Kingdom: Topley & Wilson), pp. 1304-1321.
  43. Rinke, C.S., Boyer, P.L., Sullivan, M.D., Hughes, S.H., and Linial, M.L. (2002). Mutation of the catalytic domain of the foamy virus reverse transcriptase leads to loss of processivity and infectivity. J. Virol. 76, 7560-7570. https://doi.org/10.1128/JVI.76.15.7560-7570.2002
  44. Rothnie, H.M., Chapdelaine, Y., Chapdelaine, Y., and Hohn, T. (1994). Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Adv. Virus. Res. 44, 1-67. https://doi.org/10.1016/S0065-3527(08)60327-9
  45. Schliephake, A.W., and Rethwilm, A. (1994). Nuclear localization of foamy virus Gag precursor protein. J. Virol. 68, 4946-4954.
  46. Schweizer, M., Turek, R., Hahn, H., Schliephake, A., Netzer, K.O., Eder, G., Reinhardt, M., Rethwilm, A., and Neumann-Haefelin, D. (1995). Markers of foamy virus infections in monkeys, apes, and accidentally infected humans: appropriate testing fails to confirm suspected foamy virus prevalence in humans. AIDS Res. Hum. Retroviruses 11, 161-170. https://doi.org/10.1089/aid.1995.11.161
  47. Suzuki, Y., and Craigie, R. (2007). The road to chromatin - nuclear entry of retroviruses. Nat. Rev. Microbiol. 5, 187-196. https://doi.org/10.1038/nrmicro1579
  48. Tobaly-Tapiero, J., Bittoun, P., Lehmann-Che, J., Delelis, O., Giron, M.L., de The, H., and Saib, A. (2008). Chromatin tethering of incoming foamy virus by the structural Gag protein. Traffic 9, 1717-1727. https://doi.org/10.1111/j.1600-0854.2008.00792.x
  49. Wei, S.Q., Mizuuchi, K., and Craigie, R. (1997). A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J. 16, 7511-7520. https://doi.org/10.1093/emboj/16.24.7511
  50. Woodward, C.L., Wang, C., Dixon, W.J., Htun, H., and Chow, S.A. (2003). Subcellular localization of feline immunodeficiency virus integrase and mapping of its karyophilic determinant. J. Virol. 77, 4516-4527. https://doi.org/10.1128/JVI.77.8.4516-4527.2003
  51. Yu, S.F., and Linial, M.L. (1993). Analysis of the role of the bel and bet open reading frames of human foamy virus by using a new quantitative assay. J. Virol. 67, 6618-6624.
  52. Yu, S.F., Edelmann, K., Strong, R.K., Moebes, A., Rethwilm, A., and Linial, M.L. (1996). The carboxyl terminus of the human foamy virus Gag protein contains separable nucleic acid binding and nuclear transport domains. J. Virol. 70, 8255-8262.
  53. Yu, S.F., Sullivan, M.D., and Linial, M.L. (1999). Evidence that the human foamy virus genome is DNA. J. Virol. 73, 1565-1572.

Cited by

  1. Apoptotic events induced by prototype foamy virus infection vol.20, pp.1, 2016, https://doi.org/10.1080/19768354.2015.1137488
  2. Cellular and viral determinants of retroviral nuclear entry vol.62, pp.1, 2016, https://doi.org/10.1139/cjm-2015-0350
  3. Loss of ZNF32 augments the regeneration of nervous lateral line system through negative regulation of SOX2 transcription vol.7, pp.43, 2016, https://doi.org/10.18632/oncotarget.11895
  4. Characterization of Prototype Foamy Virus Infectivity in Transportin 3 Knockdown Human 293t Cell Line vol.27, pp.2, 2017, https://doi.org/10.4014/jmb.1606.06011
  5. Stability of Retroviral Vectors Against Ultracentrifugation Is Determined by the Viral Internal Core and Envelope Proteins Used for Pseudotyping vol.40, pp.5, 2014, https://doi.org/10.14348/molcells.2017.0043
  6. Foamy Virus Integrase in Development of Viral Vector for Gene Therapy vol.30, pp.9, 2014, https://doi.org/10.4014/jmb.2003.03046