References
- Akao, Y., Iio, A., Itoh, T., Noguchi, S., Itoh, Y., Ohtsuki, Y., and Naoe, T. (2011). Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages. Mol. Ther. 19, 395-399. https://doi.org/10.1038/mt.2010.254
- Banerjee, E.R., Laflamme, M.A., Papayannopoulou, T., Kahn, M., Murry, C.E., and Henderson, W.R., Jr. (2012). Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model. PLoS One 7, e33165. https://doi.org/10.1371/journal.pone.0033165
- Bedrossian, C., Warren, C., Ohar, J., and Jackson, F. (1991). Amiodarone pulmonary toxicity - cytopathology ultrastructure and immunocytochemistry. Lab. Invest. 64, A113-A113.
- Camussi, G., Deregibus, M.C., Bruno, S., Cantaluppi, V., and Biancone, L. (2010). Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 78, 838-848. https://doi.org/10.1038/ki.2010.278
- Guttentag, S.H., Beers, M.F., Bieler, B.M., and Ballard, P.L. (1998). Surfactant protein B processing in human fetal lung. Am. J. Physiol. 275, L559-566.
- Ha, Y., Shin, J.S., Lee, D.Y., and Rhim, T. (2012). Fluorescently labeled nanoparticles enable the detection of stem cell-derived hepatocytes. B Korean Chem. Soc. 33, 1983-1988. https://doi.org/10.5012/bkcs.2012.33.6.1983
- Hu, G., Drescher, K.M., and Chen, X.M. (2012). Exosomal miRNAs: biological properties and therapeutic potential. Front. Genet. 3, 56.
- Iyer, S.N., Gurujeyalakshmi, G., and Giri, S.N. (1999). Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J. Pharmacol. Exp. Ther. 291, 367-373.
- Kim, T.H., Lee, Y.H., Kim, K.H., Lee, S.H., Cha, J.Y., Shin, E.K., Jung, S., Jang, A.S., Park, S.W., Uh, S.T., et al. (2010). Role of lung apolipoprotein A-I in idiopathic pulmonary fibrosis: antiinflammatory and antifibrotic effect on experimental lung injury and fibrosis. Am. J. Respir. Crit. Care Med. 182, 633-642. https://doi.org/10.1164/rccm.200905-0659OC
- King, T.E., Jr., Tooze, J.A., Schwarz, M.I., Brown, K.R., and Cherniack, R.M. (2001). Predicting survival in idiopathic pulmonary fibrosis: scoring system and survival model. Am. J. Respir. Crit. Care Med. 164, 1171-1181. https://doi.org/10.1164/ajrccm.164.7.2003140
- Lee, S.H., Jang, A.S., Kim, Y.E., Cha, J.Y., Kim, T.H., Jung, S., Park, S.K., Lee, Y.K., Won, J.H., Kim, Y.H., et al. (2010). Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respir. Res. 11, 16. https://doi.org/10.1186/1465-9921-11-16
- Liu, T.J., Chung, M.J., Ullenbruch, M., Yu, H.F., Jin, H., Hu, B., Choi, Y.Y., Ishikawa, F., and Phan, S.H. (2007). Telomerase activity is required for bleomycin-induced pulmonary fibrosis in mice. J. Clin. Invest. 117, 3800-3809.
- Luppi, F., Spagnolo, P., Cerri, S., and Richeldi, L. (2012). The big clinical trials in idiopathic pulmonary fibrosis. Curr. Opin. Pulm. Med. 18, 428-432. https://doi.org/10.1097/MCP.0b013e3283567ff9
- Moore, B.B., and Hogaboam, C.M. (2008). Murine models of pulmonary fibrosis. Am. J. Physiol. Lung C 294, L152-L160. https://doi.org/10.1152/ajplung.00313.2007
- Ortiz, L.A., Gambelli, F., McBride, C., Gaupp, D., Baddoo, M., Kaminski, N., and Phinney, D.G. (2003). Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl. Acad. Sci. USA 100, 8407-8411. https://doi.org/10.1073/pnas.1432929100
- Raghu, G., Collard, H.R., Egan, J.J., Martinez, F.J., Behr, J., Brown, K.K., Colby, T.V., Cordier, J.F., Flaherty, K.R., Lasky, J.A., et al. (2011). An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 183, 788-824. https://doi.org/10.1164/rccm.2009-040GL
- Selman, M., King, T.E., Pardo, A., American Thoracic, S., European Respiratory, S., and American College of Chest, P. (2001). Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann. Int. Med. 134, 136-151. https://doi.org/10.7326/0003-4819-134-2-200101160-00015
- Steele, M.P., and Schwartz, D.A. (2012). Molecular mechanisms in progressive idiopathic pulmonary fibrosis. Ann. Rev. Med. 64, 265-276.
- Szade, K., Zuba-Surma, E., Rutkowski, A.J., Jozkowicz, A., and Dulak, J. (2011). CD45-CD14 +CD34 + murine bone marrow low-adherent mesenchymal primitive cells preserve multilineage differentiation potential in long-term in vitro culture. Mol. Cells 31, 497-507. https://doi.org/10.1007/s10059-011-2176-y
- Taniguchi, H., Ebina, M., Kondoh, Y., Ogura, T., Azuma, A., Suga, M., Taguchi, Y., Takahashi, H., Nakata, K., Sato, A., et al. (2010). Pirfenidone in idiopathic pulmonary fibrosis. Eur. Respir. J. 35, 821-829. https://doi.org/10.1183/09031936.00005209
- Zhao, F., Zhang, Y.F., Liu, Y.G., Zhou, J.J., Li, Z.K., Wu, C.G., and Qi, H.W. (2008). Therapeutic effects of bone marrow-derived mesenchymal stem cells engraftment on bleomycin-induced lung injury in rats. Transplant. Proc. 40, 1700-1705. https://doi.org/10.1016/j.transproceed.2008.01.080
- Zhao, M.M., Cui, J.Z., Cui, Y., Li, R., Tian, Y.X., Song, S.X., Zhang, J., and Gao, J.L. (2013). Therapeutic effect of exogenous bone marrowderived mesenchymal stem cell transplantation on silicosis via paracrine mechanisms in rats. Mol. Med. Rep. 8, 741-746. https://doi.org/10.3892/mmr.2013.1580
Cited by
- From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling vol.4, 2016, https://doi.org/10.3389/fped.2016.00080
- Effect of the Microenvironment on Mesenchymal Stem Cell Paracrine Signaling: Opportunities to Engineer the Therapeutic Effect vol.26, pp.9, 2017, https://doi.org/10.1089/scd.2016.0349
- Mesenchymal stromal cells improve cardiac function and left ventricular remodeling in a heart transplantation model vol.34, pp.11, 2015, https://doi.org/10.1016/j.healun.2015.05.008
- Exosomes and Their Therapeutic Potentials of Stem Cells vol.2016, 2016, https://doi.org/10.1155/2016/7653489
- Mesenchymal Stromal Cells in Animal Bleomycin Pulmonary Fibrosis Models: A Systematic Review vol.4, pp.12, 2015, https://doi.org/10.5966/sctm.2015-0121
- Cell-Based Therapy for Silicosis vol.2016, 2016, https://doi.org/10.1155/2016/5091838
- Concise Review: MSC-Derived Exosomes for Cell-Free Therapy vol.35, pp.4, 2017, https://doi.org/10.1002/stem.2575
- Molecular signatures of mesenchymal stem cell-derived extracellular vesicle-mediated tissue repair vol.6, pp.1, 2015, https://doi.org/10.1186/s13287-015-0214-y
- Will stem cells bring hope to pathological skin scar treatment? vol.18, pp.8, 2016, https://doi.org/10.1016/j.jcyt.2016.05.008
- Oncostatin M-Preconditioned Mesenchymal Stem Cells Alleviate Bleomycin-Induced Pulmonary Fibrosis Through Paracrine Effects of the Hepatocyte Growth Factor vol.6, pp.3, 2017, https://doi.org/10.5966/sctm.2016-0054
- Extracellular Vesicles: Evolving Factors in Stem Cell Biology vol.2016, 2016, https://doi.org/10.1155/2016/1073140
- Exosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation vol.8, 2016, https://doi.org/10.1016/j.ebiom.2016.04.030
- Management of Fibrosis: The Mesenchymal Stromal Cells Breakthrough vol.2014, 2014, https://doi.org/10.1155/2014/340257
- Osteoblast-Derived Extracellular Vesicles Are Biological Tools for the Delivery of Active Molecules to Bone vol.33, pp.3, 2017, https://doi.org/10.1002/jbmr.3332
- Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers vol.293, pp.6, 2017, https://doi.org/10.1074/jbc.M117.807180
- Clinical Application of Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapeutics for Inflammatory Lung Diseases vol.7, pp.10, 2018, https://doi.org/10.3390/jcm7100355
- Exosomes and Their MicroRNA Cargo: New Players in Peripheral Nerve Regeneration vol.32, pp.9, 2018, https://doi.org/10.1177/1545968318798955
- Bioprocessing of Mesenchymal Stem Cells and Their Derivatives: Toward Cell-Free Therapeutics vol.2018, pp.1687-9678, 2018, https://doi.org/10.1155/2018/9415367
- NMDA receptor activation inhibits the antifibrotic effect of BM-MSCs on bleomycin-induced pulmonary fibrosis vol.315, pp.3, 2018, https://doi.org/10.1152/ajplung.00002.2018
- Mesenchymal Stem Cell Therapy of Pulmonary Fibrosis pp.1555-3892, 2018, https://doi.org/10.1177/0963689718787501
- Extracellular Vesicles Derived from Hypoxic Human Mesenchymal Stem Cells Attenuate GSK3β Expression via miRNA-26a in an Ischemia-Reperfusion Injury Model vol.59, pp.6, 2018, https://doi.org/10.3349/ymj.2018.59.6.736
- Mesenchymal Stem Cells on Horizon: A New Arsenal of Therapeutic Agents vol.14, pp.4, 2018, https://doi.org/10.1007/s12015-018-9817-x
- Human mesenchymal stem cell-derived extracellular vesicles/estrogen combined therapy safely ameliorates experimentally induced intrauterine adhesions in a female rat model vol.9, pp.1, 2018, https://doi.org/10.1186/s13287-018-0924-z
- Novel aspects of pathogenesis and regeneration mechanisms in COPD vol.10, pp.None, 2015, https://doi.org/10.2147/copd.s82518
- Mesenchymal stem cells in idiopathic pulmonary fibrosis vol.8, pp.60, 2014, https://doi.org/10.18632/oncotarget.18126
- Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease vol.19, pp.None, 2014, https://doi.org/10.1186/s12931-018-0921-x
- Emerging Role of Mesenchymal Stem Cell-derived Exosomes in Regenerative Medicine vol.14, pp.6, 2014, https://doi.org/10.2174/1574888x14666190228103230
- Prospective application of stem cells to prevent post‐operative skeletal fibrosis vol.37, pp.6, 2014, https://doi.org/10.1002/jor.24266
- Mesenchymal Stem Cells in Homeostasis and Systemic Diseases: Hypothesis, Evidences, and Therapeutic Opportunities vol.20, pp.15, 2014, https://doi.org/10.3390/ijms20153738
- Exosomes: Carriers of Pro-Fibrotic Signals and Therapeutic Targets in Fibrosis vol.25, pp.42, 2014, https://doi.org/10.2174/1381612825666191209161443
- The potential of mesenchymal stem cell therapy for chronic lung disease vol.14, pp.1, 2014, https://doi.org/10.1080/17476348.2020.1679628
- Effects of Mesenchymal Stem Cell Coculture on Human Lung Small Airway Epithelial Cells vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/9847579
- Therapeutic Potential of Exosomes in Pulmonary Fibrosis vol.11, pp.None, 2014, https://doi.org/10.3389/fphar.2020.590972
- Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease vol.20, pp.2, 2020, https://doi.org/10.1080/14712598.2020.1689954
- Extracellular vesicles and asthma: A review of the literature vol.50, pp.3, 2020, https://doi.org/10.1111/cea.13562
- Therapeutic Use of Extracellular Vesicles for Acute and Chronic Lung Disease vol.21, pp.7, 2020, https://doi.org/10.3390/ijms21072318
- Exosomes as mediators and biomarkers in fibrosis vol.14, pp.8, 2020, https://doi.org/10.2217/bmm-2019-0368
- Mesenchymal Stem Cell (MSC)‐Derived Extracellular Vesicles: Potential Therapeutics as MSC Trophic Mediators in Regenerative Medicine vol.303, pp.6, 2014, https://doi.org/10.1002/ar.24186
- Emerging role of extracellular vesicles in the respiratory system vol.52, pp.6, 2014, https://doi.org/10.1038/s12276-020-0450-9
- Neural Stem Cell-Derived Exosomes Revert HFD-Dependent Memory Impairment via CREB-BDNF Signalling vol.21, pp.23, 2014, https://doi.org/10.3390/ijms21238994
- The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future vol.27, pp.1, 2014, https://doi.org/10.3350/cmh.2020.0194
- Recent Findings on Cell-Based Therapies for COVID19-Related Pulmonary Fibrosis vol.30, pp.None, 2021, https://doi.org/10.1177/0963689721996217
- The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy vol.9, pp.None, 2014, https://doi.org/10.3389/fcell.2021.650664
- Effects of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Future Perspectives vol.17, pp.2, 2014, https://doi.org/10.1007/s12015-020-10085-8
- New Insights into Pathomechanisms and Treatment Possibilities for Lung Silicosis vol.22, pp.8, 2014, https://doi.org/10.3390/ijms22084162
- Mesenchymal Stromal Cell Secretome for Post-COVID-19 Pulmonary Fibrosis: A New Therapy to Treat the Long-Term Lung Sequelae? vol.10, pp.5, 2014, https://doi.org/10.3390/cells10051203
- Mesenchymal stem cells ameliorate silica‐induced pulmonary fibrosis by inhibition of inflammation and epithelial‐mesenchymal transition vol.25, pp.13, 2014, https://doi.org/10.1111/jcmm.16621
- Mesenchymal stromal cell extracellular vesicles as therapy for acute and chronic respiratory diseases: A meta‐analysis vol.10, pp.12, 2014, https://doi.org/10.1002/jev2.12141
- Characterizing Organelles in Live Stem Cells Using Label-Free Optical Diffraction Tomography vol.44, pp.11, 2014, https://doi.org/10.14348/molcells.2021.0190