DOI QR코드

DOI QR Code

Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process

정전 분무 공정으로 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화 특성에 미치는 기공 크기의 영향

  • Oh, Jae-Sung (School of Advanced Materials Engineering, Andong National University) ;
  • Kong, Young-Min (School of Materials Science & Engineering, University of Ulsan) ;
  • Kim, Byoung-Kee (School of Materials Science & Engineering, University of Ulsan) ;
  • Lee, Kee-Ahn (School of Advanced Materials Engineering, Andong National University)
  • 오재성 (안동대학교 신소재공학부) ;
  • 공영민 (울산대학교 첨단신소재공학부) ;
  • 김병기 (울산대학교 첨단신소재공학부) ;
  • 이기안 (안동대학교 신소재공학부)
  • Received : 2014.02.09
  • Accepted : 2014.02.12
  • Published : 2014.02.28

Abstract

Fe-Cr-Al powder porous metal was manufactured by using new electro-spray process. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on Polyurethane foam through the electro-spray process. And then degreasing and sintering processes were conduced. In order to examine the effect of cell size ($200{\mu}m$, $450{\mu}m$, $500{\mu}m$) in process, pre-samples were sintered for two hours at temperature of $1450^{\circ}C$, in $H_2$ atmospheres. A 24-hour thermo gravimetric analysis test was conducted at $1000^{\circ}C$ in a 79% $N_2$ + 21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing cell size. In the $200{\mu}m$ porous metal with a thinner strut and larger specific surface area, the depletion of the stabilizing elements such as Al and Cr occurred more quickly during the high-temperature oxidation compared with the 450, $500{\mu}m$ porous metals.

Keywords

References

  1. J. Banhart: Prog. Mater. Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  2. G. J. Davies and Shu Zhen: J. Mater. Sci., 18 (1983) 1899. https://doi.org/10.1007/BF00554981
  3. K. Ohno, K. Shimato, N. Taoka, H. Santae, T. Ninomiya and T. Komori: SAE world congress, Detroit, MI (2000).
  4. S. Ichikawa, T. Harada and T. Hamanaka: Ceramics, 38 (2003) 296.
  5. N. Miyakawa, H. Maeno and H. Takahashi: SAE world congress, Detroit, MI (2003).
  6. J. Choi and K. Kim: J. Kor. Powd.Met. Inst., 17 (2010) 489. https://doi.org/10.4150/KPMI.2010.17.6.489
  7. R. R. Unocic, G. B. Viswanathan, P. M. Sarosi, S. Karthikeyan, J. Li and M. J. Mills: Mater. Sci. Eng. A, 483 (2008) 25.
  8. C. J. Bennett, T. E. Hayes, S. T. Kolaczkowski and W. J. Thomas: Proc. R. Soc. Lond., A 439 (1992) 465. https://doi.org/10.1098/rspa.1992.0162
  9. M. V. Twing, D. E. Webster, A. Cybulski and J. A. Moulijn: Structured Catalysts and Reactors, Marcel Dekker Inc., New York, (1998) 59.
  10. P. Avila, M. Montes and E. Miro: Chem. Eng. J., 109 (2005) 1. https://doi.org/10.1016/j.cej.2005.02.024
  11. T. J. Lu, H. A. Stone and M. F. Ashby: Acta Mater., 46 (1998) 3619. https://doi.org/10.1016/S1359-6454(98)00031-7
  12. T. J. Lu: Int. J. Heat Mass Transfer., 42 (1999) 2031. https://doi.org/10.1016/S0017-9310(98)00306-8
  13. H. J. Ryu, Y. H. Lee, K. U. Son, Y. M. Kong, J. C. Kim, B. K. Kim and J. Y. Yun: J. Kor. Powd. Met. Inst., 18 (2011) 105. https://doi.org/10.4150/KPMI.2011.18.2.105
  14. H. J. Ryu, Y. H. Lee, K. U. Son, Y. M. Kong, J. C. Kim, B. K. Kim and J. Y. Yun: J. Kor. Powd. Met. Inst., 18 (2011) 112. https://doi.org/10.4150/KPMI.2011.18.2.112
  15. J. Y. Yun, S. Yang, H. Y. Koo and H. M. Lee: J. Kor. Powd. Met. Inst., 18 (2011) 526. https://doi.org/10.4150/KPMI.2011.18.6.526
  16. J. S. Oh, Y. M. Kong, B. K. Kim and K. A. Lee: J. Kor. Powd. Met. Inst., 19 (2012) 435. https://doi.org/10.4150/KPMI.2012.19.6.435
  17. S. H. Lim, J. S. Oh, S. H. Choi, M. N. Park and K. A. Lee: Met. Mater. Int., 51 (2013) 743.
  18. S. H. Choi, S. Y. Kim, J. Y. Yun, Y. M. Kong, B. K. Kim and K. A. Lee: Met. Mater. Int., 17 (2011) 301. https://doi.org/10.1007/s12540-011-0418-3
  19. O. Kubaschewski and C. B. Alcock: Metallurgical Thermochemistry, Pergamon Press, Oxford (1979) 163.

Cited by

  1. Effect of Al2O3 Inter-Layer Grown on FeCrAl Alloy Foam to Improve the Dispersion and Stability of NiO Catalysts vol.25, pp.8, 2015, https://doi.org/10.3740/MRSK.2015.25.8.391
  2. Microstructure and High Temperature Oxidation Behaviors of Fe-Ni Alloys by Spark Plasma Sintering vol.24, pp.1, 2017, https://doi.org/10.4150/KPMI.2017.24.1.53