DOI QR코드

DOI QR Code

Manufacturing and Evaluation of Properties of Nanocrystalline Ni bulk by Dynamic Compaction of Nano Ni powders using a Gas-gun System

나노 니켈 분말의 가스건 고속압축을 통한 나노결정립 니켈 벌크재의 제조 및 물성

  • Kim, Wooyeol (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Ahn, Dong-Hyun (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Park, Lee Ju (4th Agenda Research Division, Agency for Defense Development) ;
  • Park, Jong-Il (ES Materials Center, Research Institute of Industrial Science & Technology (RIST)) ;
  • Kim, Hyoung Seop (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
  • 김우열 (포항공과대학교 신소재공학과) ;
  • 안동현 (포항공과대학교 신소재공학과) ;
  • 박이주 (국방과학연구소 4기술연구본부 2부) ;
  • 박종일 (포항산업과학연구원 ES소재기술센터) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Received : 2013.12.31
  • Accepted : 2014.02.03
  • Published : 2014.02.28

Abstract

In this study, nanocrystalline nickel powders were cold compacted by a dynamic compaction method using a single-stage gas gun system. A bending test was conducted to measure the bonding strengths of the compacted regions and microstructures of the specimen were analyzed using a scanning electron microscopy. The specimen was separated into two parts by a horizontal crack after compaction. Density test shows that the powder compaction occurred only in the upper part of the specimen. Brittle fracture was occurred during the bending test of the compact sample. Dispersion of shock energy due to spalling highly affected the bonding status of the nanocrystalline nickel powder.

Keywords

References

  1. M. Long and H. J. Rack: Biomaterials, 19 (1998) 1621. https://doi.org/10.1016/S0142-9612(97)00146-4
  2. S. Hironari, Y. Nakano, H. Matsushita, A. Onoe, H. Kanai and Y. Yamashita: J. Mater. Synth. Process., 6 (1998) 415. https://doi.org/10.1023/A:1021885006938
  3. E. Antolini, M. Ferretti and S. Gemme: J. Mater. Sci., 31 (1996) 2187. https://doi.org/10.1007/BF00356644
  4. L. N. Lewis: Chem. Rev., 93 (1993) 2693. https://doi.org/10.1021/cr00024a006
  5. L. L. Beecroft and C. K. Ober: Chem. Mater., 9 (1997) 1302. https://doi.org/10.1021/cm960441a
  6. A. Mukhopadhyay and B. Basu: Inter. Mater. Rev., 52 (2007) 257. https://doi.org/10.1179/174328007X160281
  7. T. Chen, J. M. Hampikian and N. N. Thadhani: Acta Mater., 47 (1999) 2567. https://doi.org/10.1016/S1359-6454(99)00059-2
  8. Z. Q. Jin, K. H. Chen, J. Li, H. Zeng, S. F. Cheng, J. P. Liu, Z. L. Wang and N. N. Thadhani: Acta Mater., 52 (2004) 2147. https://doi.org/10.1016/j.actamat.2004.01.006
  9. H. N. Kim, S. N. Chang and D. K. Kim: Int. J. Mod. Phys. B, 22 (2008) 1686. https://doi.org/10.1142/S0217979208047262
  10. J. R. Brown, P. J. C. Chappell, G. T. Egglestone and E. P. Gellert: J. Phys. E: Sci. Instrum., 22 (1989) 771. https://doi.org/10.1088/0022-3735/22/9/016