DOI QR코드

DOI QR Code

Fabrication of Porous Cu-Ni by Freeze Drying and Hydrogen Reduction of CuO-NiO Powder Mixture

CuO-NiO 혼합분말의 동결건조 및 수소환원에 의한 Cu-Ni 다공체 제조

  • Seo, Han Gil (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 서한길 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2013.02.24
  • Accepted : 2014.01.17
  • Published : 2014.02.28

Abstract

Cu-Ni alloys with unidirectionally aligned pores were prepared by freeze-drying process of CuO-NiO/camphene slurry. Camphene slurries with dispersion stability by the addition of oligomeric polyester were frozen at $-25^{\circ}C$, and pores in the frozen specimens were generated by sublimation of the camphene during drying in air. The green bodies were hydrogen-reduced at $300^{\circ}C$ and sintered at $850^{\circ}C$ for 1 h. X-ray diffraction analysis revealed that CuO-NiO composite powders were completely converted to Cu-Ni alloy without any reaction phases by hydrogen reduction. The sintered samples showed large and aligned parallel pores to the camphene growth direction, and small pores in the internal wall of large pores. The pore size and porosity decreased with increase in CuO-NiO content from 5 to 10 vol%. The change of pore characteristics was explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.

Keywords

References

  1. T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230. https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  2. T. Fukasawa, Z.-Y. Deng, M. Ando, T. Ohji and Y. Goto: J. Mater. Sci., 36 (2001) 2523. https://doi.org/10.1023/A:1017946518955
  3. K. K. Mallick: J. Am. Ceram. Soc., 92 (2009) S85. https://doi.org/10.1111/j.1551-2916.2008.02784.x
  4. H. J. Hwang and J.-W. Moon: J. Kor. Ceram. Soc., 41 (2004) 229 (Korean). https://doi.org/10.4191/KCERS.2004.41.3.229
  5. B.-H. Yoon, E.-J. Lee, H.-E. Kim and Y.-H. Koh: J. Am. Ceram. Soc., 90 (2007) 1753. https://doi.org/10.1111/j.1551-2916.2007.01703.x
  6. E-J. Lee, Y.-H. Koh, B.-H. Yoon, H.-E. Kim and H.-W. Kim: Mater. Lett., 61 (2007) 2270. https://doi.org/10.1016/j.matlet.2006.08.065
  7. S.-T. Oh, S.-Y. Chang and M.-J. Suk: Trans. Nonferrous Met. Soc. China, 22 (2012) s688. https://doi.org/10.1016/S1003-6326(12)61787-7
  8. N.-Y. Kwon and S.-T. Oh: J. Kor. Powd. Met. Inst., 19 (2012) 259 (Korean). https://doi.org/10.4150/KPMI.2012.19.4.259
  9. W. Lee and S.-T. Oh: J. Kor. Powd. Met. Inst., 19 (2012) 446 (Korean). https://doi.org/10.4150/KPMI.2012.19.6.446
  10. O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Snabre: Talanta, 50 (1999) 445. https://doi.org/10.1016/S0039-9140(99)00129-0
  11. Gmelins Handbuch der Anorganischen Chemie, Cu. 8 Aufl., System-Nummer 60, Verlag Chemie GmbH, Weinheim (1958) 84.
  12. B. Jankoviae, B. Adnaoeviae and S. Mentus: Thermoch. Acta, 456 (2007) 48. https://doi.org/10.1016/j.tca.2007.01.033
  13. D. R. Uhlmann, B. Chalmers and K. A. Jackson: J. Appl. Phys., 35 (1964) 2986. https://doi.org/10.1063/1.1713142
  14. S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966. https://doi.org/10.1038/nmat2571
  15. K. Araki and J.W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014.

Cited by

  1. Film vol.21, pp.5, 2014, https://doi.org/10.4150/KPMI.2014.21.5.355
  2. Investigation for Microstructure and Hardness of Welded Zone of Cu-Ni Alloy using W92-Ni-Fe Sintering Tool vol.22, pp.3, 2015, https://doi.org/10.4150/KPMI.2015.22.3.181