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【Abstract】This paper deals with Kripke-style semantics for fuzzy logics. 
More exactly, I introduce algebraic Kripke-style semantics for some 
weakening-free extensions of the uninorm based fuzzy logic U L. For this, first, 
I introduce several weakening-free extensions of U L, define their 
corresponding algebraic structures, and give algebraic completeness. Next, I 
introduce several algebraic Kripke-style semantics for those systems, and 
connect these semantics with algebraic semantics. 
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1. Introduction

After introducing algebraic semantics for t-norm and uninorm 
(based) logics, their corresponding algebraic Kripke-style semantics 
have been introduced. For instance, after Esteva and Godo 
introducing algebraic semantics for monoidal t-norm (based) logics 
in Esteva & Godo (2001), their corresponding algebraic 
Kripke-style semantics were introduced in Montagna & Ono 
(2002) and Montagna & Sacchetti (2003; 2004). Analogously, 
after Metcalfe and Montagna introducing algebraic semantics for 
the uninorm (based) logic U L in Metcalfe & Montagna (2007), its 
corresponding algebraic Kripke-style semantics was introduced in 
Yang (2012). 

This paper is a continuation of the work in Yang (2012). Note 
that, although Metcalfe and Montagna introduced algebraic 
semantics for some weakening-free extensions of U L, Kripke-style 
semantics for these logics have not yet been introduced. Note also 
that in Yang (2012), he said that “we did not provide algebraic 
Kripke-style semantics for axiomatic extensions of U L. We will 
investigate it in a subsequent paper(Yang (2012), p. 13).” By 
providing algebraic Kripke-style semantics for some 
weakening-free extensions of U L, this paper completes Yang’s 
idea. 

For this, first, in Section 2, we recall U L and its 
weakening-free extensions introduced in Metcalfe & Montagna 
(2007), and their corresponding algebraic semantics as the 
necessary notions for treating the question in Yang (2012). In 
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Section 3, we introduce algebraic Kripke-style semantics for such 
extensions, and connect them with algebraic semantics.

Note that many logicians have introduced algebraic semantics as 
semantics for fuzzy logic, whereas other logicians have disliked 
such semantics due to a lack of philosophical implication. In 
particular, some logicians complained that fuzzy logic does not 
have semantics such as world semantics for modal logic. As is 
known, Kripke semantics is a representative of such semantics. 
This investigation will show that fuzzy logic also have such 
semantics. 

For convenience, we shall adopt notation and terminology 
similar to those in Cintula et al (2009), Metcalfe & Montagna 
(2007), Montagna & Sacchetti (2003; 2004), and Yang (2012), 
and we assume reader's familiarity with them (along with results 
found therein).

2. Weakening-free uninorm logics and their algebraic semantics

We base U L and its weakening-free extensions on a countable 
propositional language with formulas FOR built inductively as 
usual from a set of propositional variables VAR, binary 
connectives →, &, ∧, ∨, and constants T, F, f, t, with defined 
connectives:

df1. ～φ := φ → f, and
df2. φ ↔ ψ := (φ → ψ) ∧ (ψ → φ).
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We moreover define φn
t as φt & … & φt, n factors, where φt 

:= φ ∧ t. For the remainder we shall follow the customary 
notation and terminology. We use axiom systems to provide a 
consequence relation.

We start with the following axiomatization of U L as the most 
basic (substructural) fuzzy logic introduced here.

D efinition 2.1  (Metcalfe & Montagna (2007)) U L consists of 
the following axiom schemes and rules:

A1. φ → φ (self-implication, SI)
A2. (φ ∧ ψ) → φ, (φ ∧ ψ) → ψ  (∧-elimination, ∧-E)
A3. ((φ→ψ)∧ (φ→χ)) → (φ→(ψ∧χ))  (∧-introduction, ∧-I)
A4. φ → (φ ∨ ψ),  ψ → (φ ∨ ψ)  (∨-introduction, ∨-I)
A5. ((φ→χ)∧ (ψ→χ)) → ((φ∨ψ)→χ)  (∨-elimination, ∨-E)
A6. φ → T (verum ex quolibet, VE)
A7. F → φ  (ex falso quadlibet, EF)
A8. (φ & ψ) → (ψ & φ)  (&-commutativity, &-C)
A9. (φ & t) ↔ φ  (push and pop, PP)
A10. (φ → ψ) → ((ψ → χ) → (φ → χ))  (suffixing, SF)
A11. (φ → (ψ → χ)) ↔ ((φ & ψ) → χ)  (residuation, RE)
A12. (φ → ψ)t ∨ (ψ → φ)t (t-prelinearity, PLt)
φ → ψ, φ ⊢ ψ (modus ponens, mp)
φ, ψ ⊢ φ ∧ ψ (adjunction, adj).

D efinition 2.2  (ULs) A logic is a schematic extension of L if 
and only if (iff) it results from L by adding axiom schemes. L is 
a UL iff L is a schematic extension of U L. In particular, the 
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following are weakening-free extensions introduced in Metcalfe & 
Montagna (2007).
• IU L is U L plus ～～φ → φ  (double negation elimination, 

DNE)
• U ML is U L plus (φ & φ) ↔ φ  (idempotence, ID)
• IU ML is IU L plus (ID) and t ↔ f  (fixed-point, FP)

For easy reference we group the weakening-free uninorm logics 
introduced in Definitions 2.1 and 2.2 as a set.

D efinition 2.3 Ls = {U L, IU L, U ML, IU ML}

A theory over L (∈ Ls) is a set T of formulas. A proof in a 
sequence of formulas whose each member is either an axiom of 
L or a member of T or follows from some preceding members of 
the sequence using the two rules in Definition 2.1. T ⊢ φ, more 
exactly T ⊢L φ, means that φ is provable in T w.r.t. L, i.e., 
there is an L-proof of φ in T. The (local) deduction theorem 
((L)DT t) for L is as follows:

Proposition 2.4 Let T be a theory over L, and φ, ψ formulas.
(i) (LDTt) T ∪ {φ} ⊢ ψ iff there is n such that T ⊢ φn

t → ψ.
(ii) (DT t) For L with ID, T ∪ {φ} ⊢ ψ iff T ⊢ φt → ψ.

A theory T is inconsistent if T ⊢ F; otherwise it is consistent. 
For convenience, “～”, “∧”, “∨”, and “→” are used 

ambiguously as propositional connectives and as algebraic 
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operators, but context should make their meaning clear.
The algebraic counterpart of L is the class of the so-called 

L-algebras. Let xt := x ∧ t. They are defined as follows.

D efinition 2.5 (Metcalfe & Montagna (2007)) Define a relation 
≤ so that x ≤ y iff x ∧ y = x. 

(i) (UL-algebra) A UL algebra is a structure A  = (A, ⊤, ⊥, 
t, f, ∧, ∨, *, →) such that:

(I) (A, ⊤, ⊥, ∧, ∨) is a bounded lattice with top element 
⊤ and bottom element ⊥.

(II) (A, *, t) is a commutative monoid.
(III) y ≤ x→z iff x * y ≤ z, for all x, y, z ∈ A  

(residuation).
(IV) t ≤ (x → y)t ∨ (y → x)t (plt).
(ii) The other algebras are defined as follows: An IUL-algebra 

is a UL-algebra satisfying (dne) (x → f) → f ≤ x. A 
UML-algebra is a UL-algebra satisfying (id) x = x * x. An 
IUML-algebra is an IUL-algebra satisfying (id) and (fp) t = f.

Additional (unary) negation and (binary) equivalence operations 
are defined as follows: ～x := x → f and x ↔ y := (x → y) ∧ 

(y → x).
The class of all L-algebras is a variety which will be denoted 

by L.
L-algebra is said to be linearly ordered if the ordering of its 

algebra is linear, i.e., x ≤ y or y ≤ x (equivalently, x ∧ y = 
x or x ∧ y = y) for each pair x, y.



Algebraic Kripke-style semantics for weakening-free fuzzy logics 187

D efinition 2.6  Let K be a class of L-algebras. We define 
consequence relation ⊨K in the following way: T ⊨K φ iff for 
each A ∈ K and A-evaluation v, we have v(A) ≥ t whenever 
v(ψ) ≥ t for each ψ ∈ T. If K be a class of linearly ordered 
L-algebras, we denote consequence relation as ⊨l

L.

We write ⊨K φ instead of ∅ ⊨K φ, and T ⊨A φ instead of 
T ⊨{A} φ.

That L is the proper algebraic semantics for L is witnessed by 
the following completeness result. 

Theorem 2.7  (Metcalfe & Montagna (2007)) Let T be a theory 
over L (∈ Ls), and φ a formula. T ⊢L φ iff T ⊨L φ.

This completeness result can be refined by taking into account 
the following representation of L-algebras related to the 
prelinearity property of L-algebras.

Proposition 2.8  (Tsinakis & Blount (2003)) Each L-algebra is a 
subdirect product of linearly ordered L-algebras.

Linearly ordered sets are also called chains. This proposition 
leads to the completeness of L w.r.t. the class of chains of L.

Corollary 2.9  (Metcalfe & Montagna (2007)) Let T be a theory 
over L, and φ a formula. T ⊢L φ iff T ⊨l

L φ.
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3. Kripke-style semantics for Ls

We consider here algebraic Kripke-style semantics for L (∈ 

Ls).

D efinition 3.1  ((Yang (2012), Algebraic Kripke frame) An 
algebraic Kripke frame is a structure X  = (X, ⊤, ⊥, t, f, ≤, 
＊, →) such that (X, ⊤, ⊥, t, f, ≤, ＊, →) is a linearly 
ordered residuated pointed bounded commutative monoid. The 
elements of X  are called nodes.

D efinition 3.2  (i) (Yang (2012), UL frame) A UL frame is an 
algebraic Kripke frame, where ＊ is conjunctive (i.e., ⊥ ＊ ⊤ = 
⊥) and left-continuous (i.e., whenever sup{xi : i ∈ I} exists, x 
＊ sup{xi : i ∈ I} = sup{x ＊ xi : i ∈ I}), and so its 
residuum → is defined as x → y := sup{z: x ＊ z ≤ y} for all 
x, y ∈ X.

(ii) The other frames are defined as follows: An IUL-frame is a 
UL-frame satisfying (dne). A UML-frame is a UL-frame satisfying 
(id). An IUML-frame is an IUL-frame satisfying (id) and (fp).

We call frames satisfying Definition 3.2 L frames. Definition 
3.2 ensures that an L frame has a supremum w.r.t. ＊, i.e., for 
every x, y ∈ X, the set {z: x ＊ z ≤ y} has the supremum. X  
is said to be complete if ≤ is a complete order, i.e., where the 
join and meet ∨, ∧ are supremum and infimum, respectively.

A forcing on an algebraic Kripke frame is a relation ⊩ 
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between nodes and propositional variables, and arbitrary formulas 
subject to the conditions below: for every propositional variable p,

(AHC) if x ⊩ p and y ≤ x, then y ⊩ p;
(min)   ⊥ ⊩ p; and

for arbitrary formulas,

(t)   x ⊩ t  iff x ≤ t;
(f)   x ⊩ f  iff x ≤ f;
(⊥)  x ⊩ F iff x = ⊥;
(∧)  x ⊩ φ ∧ ψ  iff x ⊩ φ and x ⊩ ψ;
(∨)  x ⊩ φ ∨ ψ  iff x ⊩ φ or x ⊩ ψ;
(&)  x ⊩ φ & ψ  iff there are y, z ∈ X such that y ⊩ φ, 

z ⊩ ψ, and x ≤ y ＊ z;
(→)  x ⊩ φ → ψ iff for all y ∈ X, if y ⊩ φ, then x ＊ y 

⊩ ψ.

A forcing on an L frame is a forcing on an algebraic Kripke 
frame such that (max) for every atomic sentence p, {x : x ⊩ p} 
has a maximum.

D efinition 3.3 (i) (Algebraic Kripke model) An algebraic Kripke 
model is a pair (X , ⊩), where X  is an algebraic Kripke frame 
and ⊩ is a forcing on X .

(ii) (L model) A L model is a pair (X , ⊩), where X  is an L 
frame and ⊩ is a forcing on X . A L model (X , ⊩) is said to 
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be complete if X  is a complete frame and ⊩ is a forcing on X .

D efinition 3.4 (Cf. Montagna & Sacchetti (2004)) Given an 
algebraic Kripke model (X , ⊩), a node x of X  and a formula φ, 
we say that x forces φ to express x ⊩ φ. We say that φ is true 
in (X , ⊩) if t ⊩ φ, and that φ is valid in the frame X  
(expressed by X  ⊨ φ) if φ is true in (X , ⊩) for every forcing 
⊩ on X .

For soundness and completeness for L, let ⊢L φ be the 
theoremhood of φ in L. First we note the following lemma.

Lemma 3.5 (i) (Hereditary Lemma, HL) Let X  be an algebraic 
Kripke frame. For any sentence φ and for all nodes x, y ∈ X , 
if x ⊩ φ and y ≤ x, then y ⊩ φ.

(ii) Let ⊩ be a forcing on an L frame, and φ a sentence. 
Then the set {x ∈ X : x ⊩ φ} has a maximum.

Proof: (i) Easy. (ii) See Lemma 2.11 in Montagna & Sacchetti 
(2003). □

By a chain, we mean a linearly ordered algebra. The next 
proposition connects algebraic Kripke semantics and algebraic 
semantics for L (cf. see Montagna & Sacchetti (2003; 2004)).

Proposition 3.6  (i) The {⊤, ⊥, t, f, ≤, ＊, →} reduct of a 
L-chain A is an L frame, which is complete iff A is complete.
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(ii) Let X  = (X, ⊤, ⊥, t, f, ≤, ＊, →) be an L frame. Then 
the structure A  = (X, ⊤, ⊥, t, f, max, min, ＊, →) is a 
L-algebra (where max and min are meant w.r.t. ≤).

(iii) Let X  be the {⊤, ⊥, t, f, ≤, ＊, →} reduct of a 
L-chain A, and let v be an evaluation in A. Let for every 
atomic formula p and for every x ∈ A, x ⊩ p iff x ≤ v(p). 
Then (X , ⊩) is an L model, and for every formula φ and for 
every x ∈ A, we obtain that: x ⊩ φ iff x ≤ v(φ).

(iv) Let (X , ⊩) be an L model, and let A be the L-algebra 
defined as in (ii). Define for every atomic formula p, v(p) = 
max{x ∈ X : x ⊩ p}. Then, for every formula φ, v(φ) = 
max{x ∈ X : x ⊩ φ}.

Proof: The proof is similar to that of Proposition 3.8 in Yang 
(2012). □

Proposition 3.7  (Soundness) If ⊢L φ, then φ is valid in every 
L frame.

Proof: We prove the validity of (DNE), (ID), and (FP) as 
examples:

(DNE) It suffices to assume x ⊩ (φ → f) → f and show x 
⊩ φ. Suppose toward contradiction that x ⊮ φ. Since the 
sentence (φ → f) → f ↔ φ is a theorem in IU L, we have x ⊮ 

(φ → f) → f, a contradiction. Note that (φ → f) → f ↔ φ is a 
theorem in IU L.

(ID) We need to show that t ⊩ φ ↔ φ & φ. We prove the 
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left-to-right direction. For this, it suffices to assume x ⊩ φ and 
show x ⊩ φ & φ. Assume x ⊩ φ. Then, since x = x ＊ x, 
using (&), we can obtain x ⊩ φ & φ. The proof for its 
right-to-left is analogous.

(FP) We need to show that t ⊩ t ↔ f. We prove the 
left-to-right direction. For this, it suffices to assume x ⊩ t and 
show x ⊩ f. Assume x ⊩ t. Then, since the sentence t ↔ f is 
a theorem in IU ML, we can obtain x ⊩ f. The proof for its 
right-to-left is analogous.

The proof for the other cases is left to the interested reader. □

We can also obtain Proposition 3.7 as a corollary of the 
following proposition.

Proposition 3.8  Let X  = (X, ⊤, ⊥, t, f, ≤, ＊, →) be an L 
frame, and let (L) be a name introduced in Definition 2.2 and 
(L)F be the corresponding property of an L frame introduced in 
Definition 3.2 (ii). Then, X  ⊨ (L) iff X  satisfies (L)F.

Proof: It suffices to show that a linearly ordered UL-algebra is 
an L-algebra iff it satisfies the corresponding frame properties. As 
an example, we prove that X  ⊨ (DNE) iff X  satisfies (DNE)F. 
By Proposition 3.6, it suffices to prove that a UL-algebra A  is an 
IUL-algebra iff it satisfies (DNE)F, i.e., (dne), This is immediate 
because frame properties are the same as algebraic properties. □

Theorem 3.9  (Strong completeness)
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(i) L is strongly complete w.r.t. the class of all L-frames.
(ii) L is strongly complete w.r.t. the class of complete 

L-frames.

Proof: (i) and (ii) follow from Proposition 3.8 and Theorem 
2.7, and from Proposition 3.8 and Corollary 2.9, respectively. □

4. Concluding remark

We investigated algebraic Kripke-style semantics for the 
weakening-free extensions of U L in Metcalfe & Montagna (2007). 
We proved soundness and completeness theorems. Note that 
Gabbay and Metcalfe also introduced other weakening-free 
extensions of U L in Gabbay & Metcalfe (2007). We can 
analogously introduce algebraic Kripke-style semantics for such 
systems. The investigation of these semantics is left to the 
interested reader.
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약화없는 퍼지 논리를 위한 대수적 크립키형 의미론

양 은 석

이 에서 우리는 퍼지 논리들을 한 크립키형 의미론을 다룬

다. 보다 정확히 유니놈에 기반한 퍼지 논리 UL의 몇몇 약화없는 

확장을 한 수  크립키형 의미론을 소개한다. 이를 하여 먼

 UL의 약화없는 확장 채계들을 소개하고 그에 상응하는 수들

을 정의한 후 이 체계들이 수 으로 완 하다는 것을 보인다. 다

음으로 이러한 체계들을 한 크립키형 의미론을 소개하고 이를 

수  의미론과 연  짓는다.

주요어: 크립키형 의미론, 수  의미론, 다치 논리, 퍼지 논리


