DOI QR코드

DOI QR Code

Effects of Sputtering Pressure on the Properties of BaTiO3 Films for High Energy Density Capacitors

  • Park, Sangshik (School of Nano Materials Engineering, Kyungpook National University)
  • Received : 2014.02.06
  • Accepted : 2014.04.09
  • Published : 2014.04.27

Abstract

Flexible $BaTiO_3$ films as dielectric materials for high energy density capacitors were deposited on polyethylene terephthalate (PET) substrates by r.f. magnetron sputtering. The growth behavior, microstructure and electrical properties of the flexible $BaTiO_3$ films were dependent on the sputtering pressure during sputtering. The RMS roughness and crystallite size of the $BaTiO_3$ increased with increasing sputtering pressure. All $BaTiO_3$ films had an amorphous structure, regardless of the sputtering pressures, due to the low PET substrate temperature. The composition of films showed an atomic ratio (Ba:Ti:O) of 0.9:1.1:3. The electrical properties of the $BaTiO_3$ films were affected by the microstructure and roughness. The $BaTiO_3$ films prepared at 100 mTorr exhibited a dielectric constant of ~80 at 1 kHz and a leakage current of $10^{-8}A$ at 400 kV/cm. Also, films showed polarization of $8{\mu}C/cm^2$ at 100 kV/cm and remnant polarization ($P_r$) of $2{\mu}C/cm^2$. This suggests that sputter deposited flexible $BaTiO_3$ films are a promising dielectric that can be used in high energy density capacitors owing to their high dielectric constant, low leakage current and stable preparation by sputtering.

Keywords

References

  1. M. T. Domonkos, S. Heidger, D. Brown, J. V. Parker, C. W. Gregg, K. Slenes, W. Hackenberger, S. Kwon, E. Loree and T. Tran, IEEE Trans. Plasma Sci., 38, 2686 (2010). https://doi.org/10.1109/TPS.2010.2049124
  2. W. J. Sarjeant, J. Zirnheld and F. W. MacDougall, IEEE Trans. Plasma Sci., 26, 1368 (1998). https://doi.org/10.1109/27.736020
  3. L. Hua, L. Fuchang, Z. Heqing, D. Ling, H. Yongxia and K. Zhonghua, IEEE Trans. Magn., 45, 327 (2009). https://doi.org/10.1109/TMAG.2008.2008863
  4. J. L. Nash, Polymer Eng. Sci., 28, 862 (1988). https://doi.org/10.1002/pen.760281307
  5. N. Zebouchi and D. Malec, J. Appl. Phys., 83, 6190 (1998). https://doi.org/10.1063/1.367495
  6. P. Karanja and R. Nath, IEEE Trans. Electr. Insul., 28, 294 (1993). https://doi.org/10.1109/14.212254
  7. G. Love, J. Am. Ceram. Soc., 73, 339 (1990).
  8. G. Brennecka, J. Ihlefeld, J-P. Maria, B. Tuttle and P. Clem, J. Am. Ceram. Soc., 93, 3935 (2010). https://doi.org/10.1111/j.1551-2916.2010.04211.x
  9. J. Kim, D. Kim, J. Kim, Y. Kim, K. N. Hui and H. Lee, Electron. Mater. Lett., 7, 155 (2011). https://doi.org/10.1007/s13391-011-0612-y
  10. J. Lim, S. Zhang and T. R. Shrout, Electron. Mater. Lett., 7, 71 (2011). https://doi.org/10.1007/s13391-011-0311-8
  11. G. H. Jain, L. A. Patil, M. S. Wagh, D. R. Patil, S. A. Patil and D. P. Amalnerkar, Sens. Actuators, B117, 159 (2006).
  12. F. El. Kamel, P. Gonon, F. Jomni and B. Yangui, J. Eur. Ceram. Soc., 27, 3807 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.038
  13. J. Zeng, H. Wang, M. Wang, S. Shang, Z. Wang and C. Lin, Thin Solid Films, 322, 104 (1998). https://doi.org/10.1016/S0040-6090(97)00965-6
  14. D. Kim, S. Lee, Y. Park and S. Park, Mater. Lett., 40, 146 (1999). https://doi.org/10.1016/S0167-577X(99)00065-8
  15. B. Lee and J. Zhang, Thin Solid Films, 388, 107 (2001). https://doi.org/10.1016/S0040-6090(01)00816-1
  16. C. H. Wu, J. P. Chu, S. F. Wang, T. N. Lin, W. Z. Chang and V. S. John, Surf. Coat. Technol., 202, 5448 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.112
  17. Q. X. Jia, Z. Q. Shi and W. A. Anderson, Thin Solid Films, 209, 230 (1992). https://doi.org/10.1016/0040-6090(92)90680-A
  18. T. Minami, S. Ida and T. Miyata, Thin Solid Films, 416, 93 (2002).
  19. V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M.E.V. Costa and R. Martins, Thin Solid Films, 427, 402 (2003).
  20. P. K. Song, Y. Irie, S. Ohno, Y. Sato and Y. Shigesato, Jpn. J. Appl. Phys., 43, 442 (2004). https://doi.org/10.1143/JJAP.43.L442
  21. P. Zeman and S. Takabayashi, Surf. Coat. Technol., 153, 93 (2002). https://doi.org/10.1016/S0257-8972(01)01553-5
  22. L. I. Maissel and R. Glang, Handbook of Thin Film Technology, p.22, Mcgraw-Hill Inc, New York, USA, (1970).
  23. S. M. Mukhopadhyay and T. C. S Chen, J. Mater. Res., 10, 1502 (1995). https://doi.org/10.1557/JMR.1995.1502
  24. S. A. Nasser, Appl. Surf. Sci., 157, 14 (2000). https://doi.org/10.1016/S0169-4332(99)00495-X
  25. H. Kawano, K. Morii and Y. Nakayama, Mater. Lett., 12, 252 (1991). https://doi.org/10.1016/0167-577X(91)90008-T
  26. Y. B Chen, C. L. Huang, Surf. Coat. Technol., 201, 643 (2006).