DOI QR코드

DOI QR Code

Structural Properties of Ammoniated Thin Cr Films with Oxygen Incorporated During Deposition

산소가 혼입된 Cr 박막의 질화처리에 따른 구조적 특성

  • Kim, Jun (Department of Materials Engineering and Research Center for Infotronic Materials and Devices Hanbat National University) ;
  • Byun, Changsob (Department of Materials Engineering and Research Center for Infotronic Materials and Devices Hanbat National University) ;
  • Kim, Seontai (Department of Materials Engineering and Research Center for Infotronic Materials and Devices Hanbat National University)
  • 김준 (한밭대학교 신소재공학과 및 정보전자부품소재연구소) ;
  • 변창섭 (한밭대학교 신소재공학과 및 정보전자부품소재연구소) ;
  • 김선태 (한밭대학교 신소재공학과 및 정보전자부품소재연구소)
  • Received : 2014.02.07
  • Accepted : 2014.04.04
  • Published : 2014.04.27

Abstract

Metallic Cr film coatings of $1.2{\mu}m$ thickness were prepared by DC magnetron sputter deposition method on c-plane sapphire substrates. The thin Cr films were ammoniated during horizontal furnace thermal annealing for 10-240 min in $NH_3$ gas flow conditions between 400 and $900^{\circ}C$. After annealing, changes in the crystal phase and chemical constituents of the films were characterized using X-ray diffraction (XRD) and energy dispersive X-ray photoelectron spectroscopy (XPS) surface analysis. Nitridation of the metallic Cr films begins at $500^{\circ}C$ and with further increases in annealing temperature not only chromium nitrides ($Cr_2N$ and CrN) but also chromium oxide ($Cr_2O_3$) was detected. The oxygen in the films originated from contamination during the film formation. With further increase of temperature above $800^{\circ}C$, the nitrogen species were sufficiently supplied to the film's surface and transformed to the single-phase of CrN. However, the CrN phase was only available in a very small process window owing to the oxygen contamination during the sputter deposition. From the XPS analysis, the atomic concentration of oxygen in the as-deposited film was about 40 at% and decreased to the value of 15 at% with increase in annealing temperature up to $900^{\circ}C$, while the nitrogen concentration was increased to 42 at%.

Keywords

References

  1. L. Swadzba, A. Maciejny, B. Formanek, P. Podolski, B. Mendala, H. Gabriel, and A. Pozananska, Surf. Coat. Technol., 78, 137 (1996). https://doi.org/10.1016/0257-8972(94)02450-2
  2. W. Lee, S. Lee, H. Goto, H. Ko, M. Cho, and T. Yao, Phys. Stat. Sol. (c), 3, 1388 (2006). https://doi.org/10.1002/pssc.200565410
  3. C. Constantin, M. B. Haider, D. Ingram, and A. R. Smith, Appl. Phys. Lett., 85, 6371 (2004). https://doi.org/10.1063/1.1836878
  4. S. Kimura, S. Emura, K. Tokuda, Y. Hiromura, S. Hayakawa, Y. K. Zhou, S. Hasegawa, and H. Asahi, Phys. Stat. Sol. (c), 5, 1532 (2008). https://doi.org/10.1002/pssc.200778447
  5. L. Farber and M.W. Barsoum, J. Mater. Res., 14, 2560 (1999). https://doi.org/10.1557/JMR.1999.0343
  6. P. Hones, N. Martin, M. Regula, and F. Levy, J. Phys. D: Appl. Phys., 36, 1023 (2003). https://doi.org/10.1088/0022-3727/36/8/313
  7. G. G. Fuentes, R. J. Rodriguez, M. Garcia, L. Galan, I. Montero, and J. L. Segovia, Appl. Surf. Sci., 253, 7627 (2007). https://doi.org/10.1016/j.apsusc.2007.03.065
  8. J. G. Buiinsters, P. Shankar, J. Sietma, and J. J. Meulen, Mater. Sci. Eng., 341, 290 (2003).
  9. A. Conde, C. Navas, A. B. Cristobai, J. Housden, and J. Damborenea, Surf. Coat. Technol., 201, 2690 (2006). https://doi.org/10.1016/j.surfcoat.2006.05.013
  10. W. Mayr, W. Lengauer, P. Ettmayer, D. Rafaja, J. Bauer, and M. Bohn, J. Phase Equil. 20, 35, (1999). https://doi.org/10.1361/105497199770335929
  11. R. H. Lu and H. Y. Chen, Thin Solid Films 399, 370 (2001).
  12. B. Subraminian and M. Jayachandran, Corrosion Eng. Sci. Tech., 46, 554 (2011). https://doi.org/10.1179/147842209X12579401586807
  13. A. Lippitz and Th. Hubert, Surf. Coat. Technol., 200, 250 (2005). https://doi.org/10.1016/j.surfcoat.2005.02.091
  14. S. S. Liu and D. A. Stevenson, J. Electrochem. Soc, 125, 1161 (1978). https://doi.org/10.1149/1.2131641
  15. M. Taguchi and J. Kurihara, Mater. Trans. JIM, 32, 1170 (1991). https://doi.org/10.2320/matertrans1989.32.1170
  16. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., p.407, Addison-Wesley, London (1978).