DOI QR코드

DOI QR Code

Simultaneous Synthesis and Consolidation of Nanostructured MoSi2-NbSi2 Composite by High-Frequency Induction Heated Sintering and Its Mechanical Properties

  • Kang, Hyun-Su (Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Chonbuk National University)
  • Received : 2014.01.07
  • Accepted : 2014.03.26
  • Published : 2014.04.27

Abstract

The current concern about these materials ($MoSi_2$ and $NbSi_2$) focuses on their low fracture toughness below the ductile-brittle transition temperature. To improve the mechanical properties of these materials, the fabrication of nanostructured and composite materials has been found to be effective. Nanomaterials frequently possess high strength, high hardness, excellent ductility and toughness, and more attention is being paid to their potential application. In this study, nanopowders of Mo, Nb, and Si were fabricated by high-energy ball milling. A dense nanostructured $MoSi_2-NbSi_2$ composite was simultaneously synthesized and sintered within two minutes by high-frequency induction heating method using mechanically activated powders of Mo, Nb, and Si. The high-density $MoSi_2-NbSi_2$ composite was produced under simultaneous application of 80MPa pressure and an induced current. The sintering behavior, mechanical properties, and microstructure of the composite were investigated. The average hardness and fracture toughness values obtained were $1180kg/mm^2$ and $3MPa{\cdot}m^{1/2}$, respectively. These fracture toughness and hardness values of the nanostructured $MoSi_2-NbSi_2$ composite are higher than those of monolithic $MoSi_2$ or $NbSi_2$.

Keywords

References

  1. A. K. Vasudevan, J. J. Petrovic, Mater. Sci. Eng., A 155, 1 (1992). https://doi.org/10.1016/0921-5093(92)90308-N
  2. R. Mitra, Y. R. Mahajan, N. E. Prasad, W. A. Chiou, C. Ganguly. Key Eng. Mater., 108-110, 11 (1995). https://doi.org/10.4028/www.scientific.net/KEM.108-110.11
  3. J. Milne, Instant Heat, Kinetic Metals Inc., Derby, Connecticut, (1985).
  4. Y. S. Touloukian, R. W. Powell, C. Y. Ho, P. G. Klemens, Thermal Conductivity, IFI/Plenum, New York, (1970).
  5. G. Sauthoff, Intermetallics, VCH Publishers, New York, (1995).
  6. Y. Ohya, M. Hoffmann, G. Petzow, J. Mater. Sc. Lett., 12, 149 (2004).
  7. I. Y. Ko, B. R. Kim, K. S. Nam, B. M. Moom, B. S. Lee and I. J. Shon, Met. Mater. Int., 15, 399 (2009). https://doi.org/10.1007/s12540-009-0399-7
  8. I. J. Shon, I. Y. Ko, H. S. Kang, K. T. Hong, J. M. Doh and J. K. Yoon, Met. Mater. Int., 18, 115 (2012). https://doi.org/10.1007/s12540-012-0027-9
  9. Y. Ohya, M. J. Hoffmann and G. Petzow, J. Am. Ceram. Soc., 75, 2479 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb05600.x
  10. S. K. Bhaumik, C. Divakar, A. K. Singh and G. S. Upadhyaya, J. Mater. Sci. Eng., A 279, 275 (2000). https://doi.org/10.1016/S0921-5093(99)00217-8
  11. I. J. Shon, K. I. Na, J. M. Doh, H. K. Park and J. K. Yoon, Met. Mater. Int., 19, 99 (2013). https://doi.org/10.1007/s12540-013-1016-3
  12. H. S. Nalwa, Hanbook of Nanostructured Materials and Nanotechnology. Academic Press, Tokyo, (1996).
  13. S. Berger, R. Porat and R. Rosen, Prog. Mater. Sci., 42, 311 (1997). https://doi.org/10.1016/S0079-6425(97)00021-2
  14. G. W. Lee and I. J. Shon, Korean. J. Met. Mater., 51, 95 (2013).
  15. I. J. Shon, G. W. Lee, J. M. Doh and J. K. Yoon, Electron. Mater. Lett., 9, 219 (2013). https://doi.org/10.1007/s13391-012-2142-7
  16. F. Charlot, E. Gaffet, B. Zeghmati, F. Bernard and J. C. Liepce, Mater. Sci. Eng., A262, 279 (1999).
  17. V. Gauthier, C. Josse, F. Bernard, E. Gaffet and J. P. Larpin, Mater. Sci. Eng., A262, 117 (1999).
  18. M. K. Beyer and H. Clausen-Schaumann, Chem. Rev. 105, 2921 (2005). https://doi.org/10.1021/cr030697h
  19. S. M. Kwak, H. K. Park and I. J. Shon, Korean. J. Met. Mater., 51, 314 (2013).
  20. I. J. Shon, S. L. Du, j. M. Doh and J. K. Yoon, Met. Mater. Int. 19, 1041 (2013). https://doi.org/10.1007/s12540-013-5017-z
  21. N. R. Kim, S. W. Cho, W. Kim and I. J. Shon, Korean. J. Met. Mater., 50, 34 (2012). https://doi.org/10.3365/KJMM.2012.50.1.034
  22. C. Suryanarayana, M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  23. Z. Shen, M. Johnsson, Z. Zhao and M. Nygren, J. Am. Ceram. Soc., 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  24. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade and P. Asoka- Kumar, Appl. Phys. Lett., 85, 573 (2004). https://doi.org/10.1063/1.1774268
  25. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir, Intermetallics, 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  26. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir, Acta Mater., 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  27. G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  28. A. K. Vasudevan and J. J. Petrovic, Mater. Sci. Eng., A 155, 1 (1992). https://doi.org/10.1016/0921-5093(92)90308-N
  29. F. Chu, M. Lei, S. A. Maloy. J. J. Petrovic and T. E. Mitchell, Acta mater.,44, 3035 (1996). https://doi.org/10.1016/1359-6454(95)00442-4
  30. R. K. Wade and J. J. Petrovic, J. Am. Ceram. Soc. 75, 1682 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb04246.x