DOI QR코드

DOI QR Code

Mechanical properties and deformation behavior of carbon nanotubes calculated by a molecular mechanics approach

  • Received : 2013.04.09
  • Accepted : 2013.11.30
  • Published : 2014.04.25

Abstract

Carbon nanotubes are due to their outstanding mechanical properties destined for a wide range of possible applications. Since the knowledge of the material behavior is vital regarding the possible applications, experimental and theoretical studies have been conducted to investigate the properties of this promising material. The aim of the present research is the calculation of mechanical properties and of the mechanical behavior of single wall carbon nanotubes (SWCNTs). The numerical simulation was performed on basis of a molecular mechanics approach. Within this approach two different issues were taken into account: (i) the nanotube geometry and (ii) the modeling of the covalent bond. The nanotube geometry is captured by two different approaches, the roll-up and the exact polyhedral model. The covalent bond is modeled by a structural molecular mechanics approach according to Li and Chou. After a short introduction in the applied modeling techniques, the results for the Young's modulus for several SWCNTs are presented and are discussed extensively. The obtained numerical results are compared to results available in literature and show an excellent agreement. Furthermore, deviations in the geometry stemming from the different models are given and the resulting differences in the numerical findings are shown. Within the investigation of the deformation mechanisms occurring in SWCNTs, the basic contributions of each individual covalent bond are considered. The presented results of this decomposition provide a deeper understanding of the governing deformation mechanisms in SWCNTs.

Keywords

References

  1. Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S. and Kertesz, M. (1999), "Carbon nanotube actuators", Science, 284(5418), 1340-1344. https://doi.org/10.1126/science.284.5418.1340
  2. Berber, S., Kwon, Y.K. and Tomanek, D. (2000), "Unusually high thermal conductivity of carbon nanotubes", Phys. Rev. Lett., 84, 4613-4616. https://doi.org/10.1103/PhysRevLett.84.4613
  3. Chandraseker, K. and Mukherjee, S. (2007), "Atomistic-continuum and ab initio estimation of the elastic moduli of single-walled carbon nanotubes", Comput. Mater. Sci., 40(1), 147 -158. https://doi.org/10.1016/j.commatsci.2006.11.014
  4. Chen, W.H., Cheng, H.C. and Liu, Y.L. (2010), "Radial mechanical properties of single-walled carbon na-notubes using modified molecular structure mechanics", Comput. Mater. Sci., 47(4), 985-993. https://doi.org/10.1016/j.commatsci.2009.11.034
  5. Cinefra, M., Carrera, E. and Brischetto, S. (2011), "Refined shell models for the vibration analysis of multiwalled carbon nanotubes", Mech. Adv. Mater. Str., 18(7), 476-483. https://doi.org/10.1080/15376494.2011.604601
  6. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A. (1995), "A second generation force field for the simulation of proteins, nucleic acids, and organic molecules", J. Am. Chem. Soc., 117(19), 5179-5197. https://doi.org/10.1021/ja00124a002
  7. Cox, B.J. and Hill, J.M. (2007), "Exact and approximate geometric parameters for carbon nanotubes incorpo- rating curvature", Carbon, 45(7), 1453 - 1462. https://doi.org/10.1016/j.carbon.2007.03.028
  8. Dresselhaus, M., Dresselhaus, G. and Saito, R. (1995), "Physics of carbon nanotubes", Carbon, 33(7), 883-891. https://doi.org/10.1016/0008-6223(95)00017-8
  9. Foroughi, J., Spinks, G.M., Wallace, G.G., Oh, J., Kozlov, M.E., Fang, S., Mirfakhrai, T., Madden, J.D.W., Shin, M.K., Kim, S.J. and Baughman, R.H. (2011), "Torsional carbon nanotube artificial muscles", Science, 334(6055), 494-497. https://doi.org/10.1126/science.1211220
  10. Giannopoulos, G., Kakavas, P. and Anifantis, N. (2008), "Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach", Comput. Mater. Sci., 41(4), 561 - 569. https://doi.org/10.1016/j.commatsci.2007.05.016
  11. Hernandez, E., Goze, C., Bernier, P. and Rubio, A. (1998), "Elastic properties of C and BxCy Nz composite nanotubes", Phys. Rev. Lett., 80(20), 4502-4505. https://doi.org/10.1103/PhysRevLett.80.4502
  12. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56. https://doi.org/10.1038/354056a0
  13. Iijima, S. and Ichihashi, T. (1993), "Single-shell carbon nanotubes of 1-nm diameter", Nature, 363, 603-605. https://doi.org/10.1038/363603a0
  14. Kudin, K.N., Scuseria, G.E. and Yakobson, B.I. (2001), "C2F, BN, and C nanoshell elasticity from ab initio computations", Phys. Rev. B., 64(23), 235406. https://doi.org/10.1103/PhysRevB.64.235406
  15. Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
  16. Lu, W., Zu, M., Byun, J.H., Kim, B.S. and Chou, T.W. (2012), "State of the art of carbon nanotube fibers: opportunities and challenges", Adv. Mater., 24(14), 1805-1833. https://doi.org/10.1002/adma.201104672
  17. Meo, M. and Rossi, M. (2006), "Prediction of Young's modulus of single wall carbon nanotubes by molecular- mechanics based finite element modelling", Compos. Sci. Technol., 66(11-12), 1597-1605. https://doi.org/10.1016/j.compscitech.2005.11.015
  18. Muc, A. (2010), "Design and identification methods of effective mechanical properties for carbon nanotubes", Mater. Design, 31(4), 1671-1675. https://doi.org/10.1016/j.matdes.2009.03.046
  19. Odegard, G.M., Gates, T.S., Nicholson, L.M. and Wise, K.E. (2002), "Equivalent-continuum modeling of nano-structured materials", Compos. Sci. Technol., 62, 1869-1880. https://doi.org/10.1016/S0266-3538(02)00113-6
  20. Radushkevich, L.V. and Lukyanovich, V.M. (1952), "About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate", J. Phys. Chem.(Moscow), 26, 88-95.
  21. Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A. and Ordejon, P. (1999), "Ab initio structural, elastic, and vibrational properties of carbon nanotubes", Phys. Rev. B, 59(19), 12678-12688. https://doi.org/10.1103/PhysRevB.59.12678
  22. Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J. and Dekker, C. (1997), "Individual single-wall carbon nanotubes as quantum wires", Nature, 386, 474-477. https://doi.org/10.1038/386474a0
  23. Theodosiou, T. and Saravanos, D. (2007), "Molecular mechanics based finite element for carbon nanotube modeling", Comput. Model. Eng. Sci., 19(2), 121-134.
  24. Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: a review", Compos. Sci. Technol., 61(13), 1899 -1912. https://doi.org/10.1016/S0266-3538(01)00094-X
  25. Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381, 678- 680. https://doi.org/10.1038/381678a0
  26. Tserpes, K. and Papanikos, P. (2005), "Finite element modeling of single-walled carbon nanotubes", Compos. Part B., 36(5), 468-477. https://doi.org/10.1016/j.compositesb.2004.10.003
  27. Wu, C.J., Chou, C.Y., Han, C.N. and Chiang, K.N. (2009), "Estimation and validation of elastic modulus of carbon nanotubes using nano-scale tensile and vibrational analysis", Comput. Model. Eng. Sci., 41(1), 49-67.
  28. Wu, Y., Huang, M., Wang, F., Huang, X.M.H., Rosenblatt, S., Huang, L., Yan, H., O'Brien, S.P., Hone, J. and Heinz, T.F. (2008), "Determination of the Young's modulus of structurally defined carbon nanotubes", Nano Lett., 8(12), 4158-4161. https://doi.org/10.1021/nl801563q

Cited by

  1. Energy consistent modified molecular structural mechanics model for the determination of the elastic properties of single wall carbon nanotubes vol.95, 2015, https://doi.org/10.1016/j.carbon.2015.07.092
  2. On bending, buckling and vibration of graphene nanosheets based on the nonlocal theory vol.17, pp.2, 2016, https://doi.org/10.12989/sss.2016.17.2.257
  3. Elastic properties of graphene: A pseudo-beam model with modified internal bending moment and its application vol.98, 2018, https://doi.org/10.1016/j.physe.2017.12.029
  4. Nonlinear buckling and free vibration of curved CNTs by doublet mechanics vol.26, pp.2, 2014, https://doi.org/10.12989/sss.2020.26.2.213
  5. Numerical simulation of the mechanical behavior of a carbon nanotube bundle vol.232, pp.2, 2021, https://doi.org/10.1007/s00707-020-02874-6