DOI QR코드

DOI QR Code

Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models

  • Varello, Alberto (Department of Mechanical and Aerospace Engineering, Politecnico di Torino) ;
  • Carrera, Erasmo (Department of Mechanical and Aerospace Engineering, Politecnico di Torino)
  • Received : 2013.05.11
  • Accepted : 2013.12.14
  • Published : 2014.04.25

Abstract

The static analysis of structures with arbitrary cross-section geometry and material lamination via a refined one-dimensional (1D) approach is presented in this paper. Higher-order 1D models with a variable order of expansion for the displacement field are developed on the basis of Carrera Unified Formulation (CUF). Classical Euler-Bernoulli and Timoshenko beam theories are obtained as particular cases of the first-order model. Numerical results of displacement, strain and stress are provided by using the finite element method (FEM) along the longitudinal direction for different configurations in excellent agreement with three-dimensional (3D) finite element solutions. In particular, a layered thin-walled cylinder is considered as first assessment with a laminated conventional cross-section. An atherosclerotic plaque is introduced as a typical structure with arbitrary cross-section geometry and studied for both the homogeneous and nonhomogeneous material cases through the 1D variable kinematic models. The analyses highlight limitations of classical beam theories and the importance of higher-order terms in accurately detecting in-plane cross-section deformation without introducing additional numerical problems. Comparisons with 3D finite element solutions prove that 1D CUF provides remarkable three-dimensional accuracy in the analysis of even short and nonhomogeneous structures with arbitrary geometry through a significant reduction in computational cost.

Keywords

References

  1. Balzani, D., Brinkhues, S. and Holzapfel, G.A. (2012), "Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls", Comput. Method. Appl. M., 213-216, 139-151. https://doi.org/10.1016/j.cma.2011.11.015
  2. Bathe, K. (1996), Finite element procedures, Prentice Hall, Upper Saddle River, New Jersey.
  3. Capelli, C., Gervaso, F., Petrini, L., Dubini, G. and Migliavacca, F. (2009), "Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry", Medical Eng. Phys., 31(4), 441-447. https://doi.org/10.1016/j.medengphy.2008.11.002
  4. Carrera, E. and Giunta, G. (2010), "Refined beam theories based on a unified formulation", Int. J. Appl. Mech., 2(1), 117-143. https://doi.org/10.1142/S1758825110000500
  5. Carrera, E., Giunta, G., Nali, P. and Petrolo, M. (2010), "Refined beam elements with arbitrary cross-section geometries", Comput. Struct., 88(5-6), 283-293. https://doi.org/10.1016/j.compstruc.2009.11.002
  6. Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam structures: classical and advanced theories, John Wiley & Sons.
  7. Carrera, E. and Petrolo, M. (2012), "Refined one-dimensional formulations for laminated structure analysis", AIAA J., 50(1), 176-189. https://doi.org/10.2514/1.J051219
  8. Carrera, E., Petrolo, M. and Varello, A. (2012), "Advanced beam formulations for free vibration analysis of conventional and joined wings", J. Aerospace Eng., 25(2), 282-293. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000130
  9. Carrera, E. and Varello, A. (2012), "Dynamic response of thin-walled structures by variable kinematicone-dimensional models", J. Sound Vib., 331(24), 5268-5282. https://doi.org/10.1016/j.jsv.2012.07.006
  10. Cheng, G., Loree, H., Kamm, R., Fishbein, M. and Lee, R. (1993), "Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correction", Circulation, 87(4), 1179-1187. https://doi.org/10.1161/01.CIR.87.4.1179
  11. Simsek, M. (2010), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030
  12. Davies, M. (1996), "Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White lecture 1995", Circulation, 94(8), 2013-2020. https://doi.org/10.1161/01.CIR.94.8.2013
  13. Euler, L. (1744), De Curvis Elasticis, Bousquet, Lausanne and Geneva.
  14. Ganesan, R. and Zabihollah, A. (2007a), "Vibration analysis of tapered composite beams using a higher-order finite element, Part I: formulation", Compos. Struct., 77(3), 306-318. https://doi.org/10.1016/j.compstruct.2005.07.018
  15. Ganesan, R. and Zabihollah, A. (2007b), "Vibration analysis of tapered composite beams using ahigher-order finite element, Part II: parametric study", Compos. Struct., 77(3), 319-330. https://doi.org/10.1016/j.compstruct.2005.07.017
  16. Gao, H. and Long, Q. (2008), "Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques", J. Biomech., 41(14), 3053-3059. https://doi.org/10.1016/j.jbiomech.2008.07.011
  17. Gao, H., Long, Q., Graves, M., Gillard, J. and Li, Z. (2008), "Carotid arterial plaque stress analysis using fluid-structure interactive simulation based on in-vivo magnetic resonance images of four patients", J. Biomech., 42(10), 1416-1423.
  18. Gao, H., Long, Q., Graves, M., Gillard, J. and Li, Z. (2009), "Study of reproducibility of human arterial plaque reconstruction and its effects on stress analysis based on multispectral in vivo magnetic resonance imaging", J. Magn. Reson. Imaging, 30(1), 85-93. https://doi.org/10.1002/jmri.21799
  19. Holzapfel, G.A., Sommer, G. and Regitnig, P. (2004), "Anisotropic mechanical properties of tissue components in human atherosclerotic plaques", J. Biomech. Eng. - T ASME, 126(5), 657-665. https://doi.org/10.1115/1.1800557
  20. Huang, H., Virmani, R., Younis, H., Burke, A., Kamm, R. and Lee, R. (2001), "The impact of calcification on the biomechanical stability of atherosclerotic plaques", J. Biomech. Eng. - T ASME, 103(8), 1051-1056.
  21. Jones, R. (1999), Mechanics of composite materials, 2nd Ed., Taylor & Francis, Philadelphia.
  22. Kant, T. and Gupta, A. (1988), "A finite element model for a higher-order shear deformable beam theory", J. Sound Vib., 125(2), 193-202. https://doi.org/10.1016/0022-460X(88)90278-7
  23. Kapania, K. and Raciti, S. (1989), "Recent advances in analysis of laminated beams and plates, Part II:vibrations and wave propagation", AIAA J., 27(7), 935-946. https://doi.org/10.2514/3.59909
  24. Kock, S., Nygaard, J., Eldrup, N., Frund, E., Klaerke, A., Paaske, W., Falk, E. and Yong Kim, W. (2008), "Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models", J. Biomech., 41(8), 1651-1658. https://doi.org/10.1016/j.jbiomech.2008.03.019
  25. Li, Z., Howarth, S., Trivedi, R., U-King-Im, J., Graves, M., Brown, A., Wang, L. and Gillard, J. (2006), "Stress analysis of carotid plaque rupture based on in vivo high resolution MRI", J. Biomech., 39(14), 2611-2622. https://doi.org/10.1016/j.jbiomech.2005.08.022
  26. Li, Z., Tang, T., U-King-Im, J., Graves, M., Sutcliffe, M. and Gillard, J. (2008), "Assessment of carotid plaque vulnerability using structural and geometrical determinants", Circulation, 72(7), 1092-1099. https://doi.org/10.1253/circj.72.1092
  27. Librescu, L. and Na, S. (1998), "Dynamic response of cantilevered thin-walled beams to blast and sonic-boom loadings", Shock Vib., 5(1), 23-33. https://doi.org/10.1155/1998/526216
  28. Loree, H., Kamm, R., Stringfellow, R. and Lee, R. (1992), "Effects of fibrous cap thickness on peakcircumferential stress in model atherosclerotic vessels", Circulation Res., 71(4), 850-858. https://doi.org/10.1161/01.RES.71.4.850
  29. Marur, S.R. and Kant, T. (1996), "Free vibration analysis of fiber reinforced composite beams using higher order theories and finite element modeling", J. Sound Vib., 194(3), 337-351. https://doi.org/10.1006/jsvi.1996.0362
  30. Marur, S.R. and Kant, T. (1997), "On the performance of higher order theories for transient dynamic analysis of sandwich and composite beams", Comput. Struct., 65(5), 741-759. https://doi.org/10.1016/S0045-7949(96)00427-0
  31. Marur, S.R. and Kant, T. (2007), "On the angle ply higher order beam vibrations", Comput. Mech., 40(1),25-33. https://doi.org/10.1007/s00466-006-0079-0
  32. Na, S. and Librescu, L. (2001), "Dynamic response of elastically tailored adaptive cantilevers of nonuniformcross section exposed to blast pressure pulses", Int. J. Impact Eng., 25(9), 847-867. https://doi.org/10.1016/S0734-743X(01)00022-7
  33. Petersen, S., Peto, V., Rayner, M., Leal, J., Luengo-Fernandez, R. and Gray, A. (2005), European Cardiovascular Disease Statistics, British Heart Foundation (BHF), London.
  34. RamalingerswaraRao, S. and Ganesan, N. (1995), "Dynamic response of tapered composite beams usinghigher order shear deformation theory", J. Sound Vib., 187(5), 737-756. https://doi.org/10.1006/jsvi.1995.0560
  35. Rodriguez, J., Ruiz, C., Doblare, M. and Holzapfel, G. (2008), "Mechanical stresses in abdominal aorticaneurysms: influence of diameter asymmetry and material anisotropy", J. Biomech. Eng. - T ASME, 130(2), 021023(1-10). https://doi.org/10.1115/1.2898830
  36. Silvestre, N. and Camotim, D. (2002), "Second-order generalised beam theory for arbitrary orthotropic materials", Thin Wall. Struct., 40(9), 791-820. https://doi.org/10.1016/S0263-8231(02)00026-5
  37. Tang, D., Yang, C., Mondal, S., Liu, F., Canton, G., Hatsukami, T. and Yuan, C. (2008), "A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models", J. Biomech., 41(4), 727-736. https://doi.org/10.1016/j.jbiomech.2007.11.026
  38. Timoshenko, S. (1921), "On the correction for shear of the differential equation for transverse vibrations of prismatic bars", Philos. Mag., 41, 744-746. https://doi.org/10.1080/14786442108636264
  39. Tong, X., Tabarrok, B. and Yeh, K.Y. (1995), "Vibration analysis of Timoshenko beams with nonhomogeneity and varying cross-section", J. Sound Vib., 186(5), 821-835. https://doi.org/10.1006/jsvi.1995.0490
  40. Varello, A. and Carrera, E., "Static and dynamic analysis of a thin-walled layered cylinder by refined 1DTheories", Proceedings of the 10th World Congress on Computational Mechanics, Sao Paulo, Brazil, July.
  41. Yu, W., Volovoi, V., Hodges, D. and Hong, X. (2002), "Validation of the variational asymptotic beam sectional analysis (VABS)", AIAA J., 40(10), 2105-2113. https://doi.org/10.2514/2.1545
  42. Yuan, C., Kerwin, W., Ferguson, M., Polissar, N., Zhang, S., Cai, J. and Hatsukami, T. (2002), "Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization", J. Mag. Reson. Imaging, 15(1), 62-67. https://doi.org/10.1002/jmri.10030

Cited by

  1. Static and free-vibration analyses of dental prosthesis and atherosclerotic human artery by refined finite element models 2017, https://doi.org/10.1007/s10237-017-0961-z
  2. Recent developments on refined theories for beams with applications vol.2, pp.2, 2015, https://doi.org/10.1299/mer.14-00298