References
- Aboudi, J. (1991), Mechanics of composite materials: a unified micromechanical approach, Elsevier, The Netherlands.
- Aboudi, J., Pindera, M.J. and Arnold, S.M. (1994), "Elastic response of metal matrix composites with tailored microstructures to thermal gradients", Int. J. Solids Struct., 31(10), 1393-1428. https://doi.org/10.1016/0020-7683(94)90184-8
- Aboudi, J., Pindera, M.J. and Arnold, S.M. (1996), "Thermoelastic theory for the response of materials functionally graded in two directions", Int. J. Solids Struct., 33(7), 931-966. https://doi.org/10.1016/0020-7683(95)00084-4
- Aboudi, J., Pindera, M.J. and Arnold, S.M. (1999), "Higher-order theory for functionally graded materials", Compos. Part B Eng., 30(8), 777-832. https://doi.org/10.1016/S1359-8368(99)00053-0
- Azadi, M. (2011), "Free and forced vibration analysis of FG beam considering temperature dependency of material properties", J. Mech. Sci. Technol., 25(1), 69-80. https://doi.org/10.1007/s12206-010-1015-y
- Bathe, K.J. (2006), Finite element procedures, Prentice hall.
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164
- Bui, T. Q., Khosravifard, A., Zhang, Ch., Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method", Eng. Struct., 47, 90-104. https://doi.org/10.1016/j.engstruct.2012.03.041
- Carrera, E (2003), "Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Method. E., 10(3), 215-296. https://doi.org/10.1007/BF02736224
- Carrera, E. and Brischetto, S. (2008a), "Analysis of thickness locking in classical, refined and mixed multilayered plate theories", Compos. Struct., 82(4), 549-562. https://doi.org/10.1016/j.compstruct.2007.02.002
- Carrera, E. and Brischetto, S. (2008b), "Analysis of thickness locking in classical, refined and mixed theories for layered shells", Compos. Struct., 85(1), 83-90. https://doi.org/10.1016/j.compstruct.2007.10.009
- Carrera, E. and Giunta, G. (2009a), "Hierarchical evaluation of failure parameters in composite plates", AIAA J., 47(3), 692-702. https://doi.org/10.2514/1.38585
- Carrera, E. and Giunta, G. (2009b), "Exact, hierarchical solutions for localised loadings in isotropic, laminated and sandwich shells", J. Pressure Vessel Technol., 131(4), 041202. https://doi.org/10.1115/1.3141432
- Carrera, E. and Giunta, G. (2010), "Refined beam theories based on a unified formulation", Int. J. Appl. Mech., 2(1), 117-143. https://doi.org/10.1142/S1758825110000500
- Carrera, E., Giunta, G., Nali, P. and Petrolo, M. (2010), "Refined beam elements with arbitrary cross-section geometries", Comput. Struct., 88(5-6), 283-293. https://doi.org/10.1016/j.compstruc.2009.11.002
- Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam structures: classical and advanced theories, Wiley-Blackwell.
- Carrera, E. and Petrolo, M. (2011), "On the effectiveness of higher-order terms in refined beam theories", J. Appl. Mech. - T ASME, 78(2), 021013-1-021013-17. https://doi.org/10.1115/1.4002207
- Carrera, E. and Varello, A. (2013), "Dynamic response of thin-walled structures by variable kinematic one-dimensional models", J. Sound Vib., 331(24), 5268-5282.
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
- Cowper, G.R. (1966), "The shear co-efficient in Timoshenko beam theory", Int. J. Appl. Mech., 33(10), 335-340. https://doi.org/10.1115/1.3625046
- Giunta, G., Belouettar, S. and Carrera, E. (2010), "Analysis of FGM beams by means of classical and advanced theories", Mech. Adv. Mater. Struct., 17(8), 622-635. https://doi.org/10.1080/15376494.2010.518930
- Giunta, G., Biscani, F., Belouettar, S. and Carrera, E. (2011a), "Analysis of thin-walled beams via a one-dimensional unified formulation", Int. J. Appl. Mech., 3(3), 407-434. https://doi.org/10.1142/S1758825111001056
- Giunta, G., Biscani, F., Belouettar, S. and Carrera, E. (2011b), "Hierarchical modelling of doubly curved laminated composite shells under distributed and localised loadings", Compos. Part B: Eng., 42(4), 682-691. https://doi.org/10.1016/j.compositesb.2011.02.002
- Giunta, G., Crisafulli, D., Belouettar, S. and Carrera, E. (2011), "Hierarchical theories for the free vibration analysis of functionally graded beams", Compos. Struct., 94(1), 68-74. https://doi.org/10.1016/j.compstruct.2011.07.016
- Giunta, G., Biscani, F., Belouettar, S., Ferreira, A.J.M. and Carrera, E. (2013a), "Free vibration analysis of composite beams via refined theories", Compos. Part B: Eng., 44(1), 540-552. https://doi.org/10.1016/j.compositesb.2012.03.005
- Giunta, G., Crisafulli, D., Belouettar, S. and Carrera, E. (2013b), "A thermo-mechanical analysis of functionally graded beams via hierarchical modelling", Compos. Struct., 95, 676-690. https://doi.org/10.1016/j.compstruct.2012.08.013
- Hill, R. (1965), "A self-consistent mechanics of composite materials", J. Mech. Phys. Solids, 13(4), 213-222. https://doi.org/10.1016/0022-5096(65)90010-4
- Hughes, T.J.R. (2000), The finite element method, Dover.
- Khalili, S.M.R., Jafari, A.A. and Eftekhari, S.A. (2010), "A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads", Compos. Struct., 92(10), 2497-2511. https://doi.org/10.1016/j.compstruct.2010.02.012
- Koizumi, M. (1997), "FGN activities in Japan", Compos. Part B - Eng., 28(1-2), 1-4.
- Miyamoto, Y., Kaysser, W. A., Rabin, B.H., Kawasaki, A. and Ford R.G. (1999), Functionally graded materials: design, Processing and Applications, Kluwer Academic, Boston, USA.
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
- Murty, A.V. K. (1970), "Analysis of short beams", AIAA J., 8, 2098-2100. https://doi.org/10.2514/3.6067
- Na, S., Kim, K.W. Lee, B.H. and Marzocca, P. (2009), "Dynamic response analysis of rotating functionally graded thin-walled blades exposed to steady temperature and external excitation", J. Therm. Stresses, 32(3), 209-225. https://doi.org/10.1080/01495730802507956
- Nemat-Nasser, S. and Hori, M. (1993), Micromechanics: overall properties of heterogeneous materials. North-Holland, New York.
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. - ASCE, 85(7), 67-94.
- Philips, G.M. (2003), Interpolation and approximation by polynomials, Springer-Verlag.
- Pindera, M. J., Aboudi, J. and Arnold, S.M. (1995), "Limitations of the uncoupled RVE-based micromechanical approach in the analysis of functional graded composites", Mech. Mater., 20(1), 77-94. https://doi.org/10.1016/0167-6636(94)00052-2
- Praveen, G.N. and Reddy, J.N. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solids Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9
- Reddy, J. N. (2002), Energy principles and variational methods in applied mechanics, John Wiley and Sons.
- Shooshtari, A. and Rafiee, M. (2011), "Nonlinear forced vibration analysis of clamped functionally graded beams", Acta Mech., 221(1-2), 23-38. https://doi.org/10.1007/s00707-011-0491-1
- Simsek, M., and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
- Simsek, M. (2010), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030
- Simsek, M. and Cansiz, S. (2012), "Dynamics of elastically connected double-functionally graded beam systems with different boundary conditions under action of a moving harmonic load", Compos. Struct., 94(9), 2861-2878. https://doi.org/10.1016/j.compstruct.2012.03.016
- Simsek, M., Kocaturk, T. and Akbas, S.D. (2012), "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load", Compos. Struct., 94(8), 2358-2364. https://doi.org/10.1016/j.compstruct.2012.03.020
- Suresh, S. and Mortensen, A. (1998), Fundamentals of functional graded materials, IOM Communications Limited, London, UK.
- Wakashima, H. T. and Tsukamoto, H. (1990), "Micromechanical approach to the thermomechanics of ceramic-metal gradient materials", Proceedings of the 1st Symposium on Functionally Gradient Materials, The Functionally Gradient Materials Forum, Sendai, Japan.
- Watanabe, R., Nishida, T. and Hirai, T. (2003), "Present status of research on design and processing of functionally graded materials", Metal. Mater. Int., 9(6), 513-519. https://doi.org/10.1007/BF03027249
- Yang, J., Chen, Y., Xiang, Y. and Jia. X.L. (2008), "Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load", J. Sound Vib., 312(1-2), 166-181. https://doi.org/10.1016/j.jsv.2007.10.034
- Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2005), The finite element method: its basis and fundamentals, Elsevier.
- Zuiker, J.R. and Dvorak, G.J. (1994), "The effective properties of functionally graded composites - i extension of the Mori-Tanaka method to linearly varying fields", Compos. Eng., 4(1), 19-35. https://doi.org/10.1016/0961-9526(94)90004-3
Cited by
- Buckling analysis of functionally graded material grid systems vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.877
- Analytical and numerical method for free vibration of double-axially functionally graded beams vol.152, 2016, https://doi.org/10.1016/j.compstruct.2016.05.003
- Modeling and analysis of functionally graded sandwich beams: A review pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1447178
- Vibration suppression of a double-beam system by a two-degree-of-freedom mass-spring system vol.21, pp.3, 2014, https://doi.org/10.12989/sss.2018.21.3.349
- Impact of UV curing process on mechanical properties and dimensional accuracies of digital light processing 3D printed objects vol.22, pp.2, 2014, https://doi.org/10.12989/sss.2018.22.2.161
- Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory vol.224, pp.None, 2019, https://doi.org/10.1016/j.compstruct.2019.111041
- Guided Wave Propagation for Monitoring the Rail Base vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/4756574