참고문헌
- Achenbach, J.D. (1973), Wave propagation in elastic solids, (Eds. H.A. Lauwerier and W. T. Koiter), North-Holland Series in Applied Mathematics and Mechanics, volume 16, North Holland, Amsterdam, The Netherlands.
- Achenbach, J.D. (1998), "Lamb waves as thickness vibrations superimposed on a membrane carrier wave", J. Acoust. Soc. Am., 103(5), 2283-2286. https://doi.org/10.1121/1.422746
- Achenbach, J.D. (1999), "Wave motion in an isotropic elastic layer generated by a time-harmonic point load of arbitrary direction", J. Acoust. Soc. Am., 106(1), 83-90. https://doi.org/10.1121/1.427037
- Achenbach, J.D. and Xu, Y. (1999), "Use of elastodynamic reciprocity to analyze point-load generated axisymmetric waves in a plate", Wave Motion, 30(1), 57-67. https://doi.org/10.1016/S0165-2125(98)00050-X
- Achenbach, J.D. (2000), "Quantitative nondestructive evaluation", Int. J. Solids Struct., 37(1, 2), 13-27. https://doi.org/10.1016/S0020-7683(99)00074-8
- Achenbach, J.D. (2003), Reciprocity in elastodynamics, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, United Kindom.
- Ahmad, Z.A.B. (2011), Numerical simulations of waves in plates using a semi-analytical finite element method, Technical report: Fortschritt-Berichte VDI, Number 437 in Reihe 20-Rechnerunterstutze Verfahren. VDI Verlag.
- Ahmad, Z.A.B., Vivar-Perez, J.M., Willberg, C. and Gabbert, U. (2009), "Lamb wave propagation using wave finite element method", PAMM- Proc. Appl. Math. Mech., 9, 509-510. https://doi.org/10.1002/pamm.200910227
- Bartoli, I., Marzania, A., Lanza di Scalea, F. and Violab, E. (2006), "Modeling wave propagation in damped waveguides of arbitrary cross-section", J. Sound Vib., 295(3-5), 685-707. https://doi.org/10.1016/j.jsv.2006.01.021
- Bonnet, M. and Constantinescu, A. (2005), "Inverse problems in elasticity", Inverse Probl., 21(2), 1-50. https://doi.org/10.1088/0266-5611/21/1/001
- Boyd, J.P. (2000), Chebyshev and fourier spectral methods (2nd Ed.), Dover, New York, USA.
- Chakraborty, A. and Gopalakrishnan, S. (2004), "Wave propagation in inhomogeneous layered media: solution of forward and inverse problems", Acta Mech., 169, 153-185. https://doi.org/10.1007/s00707-004-0080-7
- Chang, Z. and Mal, A. (1999), "Scattering of Lamb waves from a rivet hole with edge cracks", Mech. Mater., 31(3), 197-204. https://doi.org/10.1016/S0167-6636(98)00060-X
- Delsanto, P.P., Whitcombe, T., Chaskelis, H.H. and Mignogna, R.B. (1992), "Connection machine simulation of ultrasonic wave propagation in materials. I: The one-dimensional case", Wave Motion, 16(1), 65-80. https://doi.org/10.1016/0165-2125(92)90047-6
- Delsanto, P.P., Schechter, R.S., Chaskelisb, H.H., Mignogna, R.B. and Kline, R. (1994), "Connection machine simulation of ultrasonic wave propagation in materials. II: The two-dimensional case", Wave Motion, 20(4), 295-314. https://doi.org/10.1016/0165-2125(94)90016-7
- Delsanto, P.P., Schechter, R.S. and Mignogna, R.B. (1997), "Connection machine simulation of ultrasonic wave propagation in materials III: The three-dimensional case", Wave Motion, 26(4), 329-339. https://doi.org/10.1016/S0165-2125(97)00013-9
- Doyle, J.F. (1997), Wave propagation in structures: spectral analysis using fast discrete Fourier transform. 2 edition, Mechanical Engineering Series, Springer, New York, USA.
- Duczek, S., Willberg, C., Schmicker, D. and Gabbert, U. (2012), "Development, validation and comparison of higher order finite element approaches to compute the propagation of Lamb waves efficiently", Key Eng. Mater., 518, 95-105. https://doi.org/10.4028/www.scientific.net/KEM.518.95
- Fornberg, B. (1998), A practical guide to pseudospectral methods, (Eds. P.G. Ciarlet, A. Iserles, R.V. Kohn, and M.H. Wright), Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, United Kindom.
- Galan, J.M. and Abascal, R. (2002), "Numerical simulation of Lamb wave scattering in semi-infinite plates", Int. J. Numer. Meth. Eng., 53(5), 1145-1173. https://doi.org/10.1002/nme.331
- Gazis, D.C. (1958), "Exact analysis of the plane-strain vibrations of thick-walled hollow cylinders", J. Acoust. Soc. Am., 30(8), 786-794. https://doi.org/10.1121/1.1909761
- Giurgiutiu, V. (2005), "Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring", J. Intel. Mat. Syst. Str., 16, 291-305. https://doi.org/10.1177/1045389X05050106
- Glushkov, E.V., Glushkova, N.V., Seemann, W. and Kvasha, O.V. (2006). "Elastic wave excitation in a layer by piezoceramic patch actuators", Acoust. Phys., 52(4), 398-407. https://doi.org/10.1134/S106377100604004X
- Glushkov, Y.V., Glushkova, N.V. and Krivonos, A.S. (2010), "The excitation and propagation of elastic waves in multilayered anisotropic composites", J. Appl. Math. Mech., 74(3), 297-305. https://doi.org/10.1016/j.jappmathmech.2010.07.005
- Gomilko, A.M., Gorodetskaya, N.S. and Meleshko, V.V. (1991), "Longitudinal Lamb waves in a semi-infinite elastic layer", Int. J. Appl. Mech., 27(6), 577-581.
- Gopalakrishnan, S. and Mitra, M. (2010), Wavelet methods for dynamical problems: with application to metallic, composite, and nano-composite structures, CRC Press Inc, Florida, USA.
- Gopalakrishnan, S., Chakraborty, A. and Mahapatra, D.R. (2008), Spectral finite element method, (Ed. K.J. Bathe), Computational Fluid and Solid Mechanics, volume XIV. Springer, New York, USA.
- Graff, K.F. (1975), Wave motion in elastic solids, Oxford University Press, London, United Kindom.
- Hayashi, T. and Kawashima, K. (2002), "Multiple reflections of Lamb waves at a delamination", Ultrasonics, 40(1-8), 193-197. https://doi.org/10.1016/S0041-624X(02)00136-1
- Holden, A. (1951), "Longitudinal modes of elastic waves in isotropic cylinders and slabs", Bell Syst. Technical J., 30(4), 956-969. https://doi.org/10.1002/j.1538-7305.1951.tb03691.x
- Huang, H., Pamphile, T. and Derriso, M. (2008), "The effect of actuator bending on Lamb wave displacement fields generated by a piezoelectric patch", Smart Mater. Struct., 17(5), 1-13.
- Jackson, J.D. (1998), Classsical electrodynamics (3rd Ed.), John Wiley & Sons, Inc. New York, USA.
- Jin, J., Quek, S.T. and Wang, Q. (2003), "Analytical solution of excitation of Lamb waves in plates by inter-digital transducers", P. Roy. Soc. Lond. A, 459(2033), 1117-1134. https://doi.org/10.1098/rspa.2002.1071
- Karmazin, A., Kirillova, E., Seemann, W. and Syromyatnikov, P. (2010), "Modelling of 3d steady-state oscillations of anisotropic multilayered structures applying the Green's functions", Adv. Theor. Appl. Mech., 3(9), 425-445.
- Karmazin, A., Kirillova, E., Seemann, W. and Syromyatnikov, P. (2011), "Investigation of Lamb elastic waves in anisotropic multilayered composites applying the Green's matrix", Ultrasonics, 51(1), 17-28. https://doi.org/10.1016/j.ultras.2010.05.003
- Kudela, P. and Ostachowicz, W.M. (2008), "Wave propagation modelling in composite plates", Appl. Mech. Mater., 9, 89-104. https://doi.org/10.4028/www.scientific.net/AMM.9.89
- Kudela, P. and Ostachowicz, W. M. (2009), "3D time-domain spectral elements for stress waves modelling", J. Physics, 181(1), 1-8.
- Lamb, H. (1917), "On waves in an elastic plate", P. Roy. Soc. A, 93, 114-128. https://doi.org/10.1098/rspa.1917.0008
- Lee, B.C. and Staszewski, W.J. (2003a), "Modelling of Lamb waves for damage detection in metallic structures: Part I. Wave propagation", Smart Mater. Struct., 12(5), 804-814. https://doi.org/10.1088/0964-1726/12/5/018
- Lee, B.C. and Staszewski, W.J. (2003b), "Modelling of Lamb waves for damage detection in metallic structures: Part II. Wave interactions with damage", Smart Mater. Struct., 12(5), 815-824. https://doi.org/10.1088/0964-1726/12/5/019
- Leonard, K.R., Malyarenko, E.V. and Hinders, M. K. (2002), "Ultrasonic Lamb wave tomography", Inverse Probl., 18(6), 1795-1808. https://doi.org/10.1088/0266-5611/18/6/322
- Liu, G.R. (2002), "A combined finite element/strip element method for analyzing elastic wave scattering by cracks and inclusions in laminates", Comput. Mech., 28(1), 76-81. https://doi.org/10.1007/s00466-001-0272-0
- Love, A.E. (1911), Some problems of geodynamics, Cambridge University Press, Cambridge, United Kindom.
- Loveday, P.W. (2007), "Analysis of piezoelectric ultrasonic transducers attached to waveguides using waveguide finite elements", IEEE T. Ultrason. Ferr., 54(10), 2045-2051. https://doi.org/10.1109/TUFFC.2007.499
- Lu, Y., Wang, X., Tang, J. and Ding, Y. (2008), "Damage detection using piezoelectric transducers and the Lamb wave approach: II. Robust and quantitative decision making", Smart Mater. Struct., 17(2), 025034, doi:10.1088/0964-1726/17/2/025034.
- Lyon, R.H. (1955), "Response of an elastic plate to localized driving forces", J. Acoust. Soc. Am., 27(2), 259-265. https://doi.org/10.1121/1.1907510
- Mindlin, R.D. (1951), "Thickness-shear and flexural vibrations of crystal plates", J. Appl. Phys., 22(3), 316-323. https://doi.org/10.1063/1.1699948
- Mindlin, R.D. and Medick, M.A. (1959), "Extensional vibrations of elastic plates", J. Appl. Mech. - T ASME, 26, 561-569.
- Mindlin, R.D. (1960), Waves and vibrations in isotropic elastic plates, (Eds. J.N. Goodier and N.J. Hoff) First Symposium on Naval Structural Machanics ,1958. Pergamon, Oxford .
- Morvan, B., Wilkie-Chancellier, N., Duflo, H., Trinel, A. and Duclos, J. (2003), "Lamb wave reflection at the free edge of a plate", J. Acoust. Soc. Am., 113(3), 1417-1425. https://doi.org/10.1121/1.1539521
- Muller, D.E. (1959), "A method for solving algebraic equations using an automatic computer", Math. Comput., 10(56), 208-215.
- Onoe, M.A. (1955), A study of the branches of the velocity-dispersion equations of elastic plates and rods, Technical report: Report Joint Commitee on Ultrasonics of the Institute of Electrical Communication engineers and the Acoustical society of Japan.
- Osborne, M.F.M. and Hart, S.D. (1945), "Transmission, reflection, and guiding of an exponential pulse by a steel plate in water. I. theory", J. Acoust. Soc. Am., 17(1), 1-18. https://doi.org/10.1121/1.1916293
- Ostachowicz, W.M., Kudela, P., Krawczuk, M. and Zak, A. (2012), Guided waves in structures for SHM: the time-domain spectral element method, John Wiley & Sons, Ltd, United Kindom.
- Peng, H., Meng, G. and Li., F. (2009), "Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection", J. Sound Vib., 320, 942-954. https://doi.org/10.1016/j.jsv.2008.09.005
- Raghavan, A. and Cesnik, C.E.S. (2004), "Modeling of piezoelectric-based Lamb wave generation and sensing for structural health monitoring", Proc. SPIE, 5391, 419-430.
- Raghavan, A. and Cesnik C.E.S. (2007), "Review of guided-wave structural health monitoring", Shock Vib., 39(2), 91-114. https://doi.org/10.1177/0583102406075428
- Rayleigh, L. (1885), "Waves propagated along the plane surface of an elastic solid", Proc. London Math. Soc., 20, 225-234.
- Rose, J.L. (2002), "A baseline and vision of ultrasonic guided wave inspection potential", J. Press. Vessel T. - ASME, 124(3), 273-282. https://doi.org/10.1115/1.1491272
- Royer, D. and Dieulesaint, E. (2000), Elastic waves in solids I: free and guided propagation, Springer, Berlin, Germany.
- Sirohi, J. and Chopra, I. (2000), "Fundamental understanding of piezoelectric strain sensors", J. Intel. Mater. Syst. Str., 11, 246-247. https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0
- Su, Z. and Ye, L. (2009), Identification of damage using Lamb waves. from fundamentals to applications, (Eds. F. Pfeiffer and P. Wriggers), Lecture Notes in Applied and Computational Mechanics, volume 48, Springer, London, United Kindom.
- Sun, J.H. and Wu, T.T. (2009), "A Lamb wave source based on the resonant cavity of phononic-crystal plates", IEEE T. Ultrason. Ferr., 59(1), 121-128.
- Tian, J., Gabbert, U., Berger, H., and Su, X. (2004), "Lamb wave interaction with delaminations in CFRP laminate", Comput. Mater. Continua, 1(4), 327-336.
- Trefethen, L.M. (2000), Spectral methods in MATLAB. SIAM, USA.
- Velichko, A. and Wilcox, P.D. (2007), "Modeling the excitation of guided waves in generally anisotropic multilayered media", J. Acoust. Soc. Am., 121(1), 60-69. https://doi.org/10.1121/1.2390674
- Viktorov, I.A. (1967), Rayleigh and Lamb waves: physical theory and applications, Plenum Press, New York, USA.
- Vivar-Perez, J.M. (2012), Analytical and spectral methods for the simulation of elastic waves in thin plates, Technical Report: Number 441 in Reihe 20, Fortschrit- Berichte VDI. VDI Verlag.
- Vivar-Perez, J. M., Willberg, C. and Gabbert, U. (2009a), "Simulation of piezoelectric induced Lamb waves in plates", PAMM-Proc. Appl. Math. Mech., 9, 503-504. https://doi.org/10.1002/pamm.200910224
- Vivar-Perez, J.M., Willberg, C. and Gabbert, U. (2009b), "Simulation of piezoelectric Lamb waves in plate structures", Proceedings of the International Conference on Structural Engineering Dynamics. ICEDyn Ericeira, Portugal. 22.-24. June.
- von Ende, S., Schafer, I. and Lammering, R. (2007), "Lamb wave excitation with piezoelectric wafers - an analytical approach", Acta Mech., 193(3-4), 141-150. https://doi.org/10.1007/s00707-006-0434-4
- Von Ende, S. and Lammering, R. (2007), "Investigation on piezoelectrically induced Lamb wave generation and propagation", Smart Mater. Struct., 16(5), 1802-1809. https://doi.org/10.1088/0964-1726/16/5/035
- von Ende, S. and Lammering, R. (2009), "Modeling and simulation of Lamb wave generation with piezoelectric plates", Mech. Adv. Mater. Struct., 16(3), 188-197. https://doi.org/10.1080/15376490902746780
- Wang, X., Lu, Y. and Tang, J. (2008), "Damage detection using piezoelectric transducers and the Lamb wave approach: I. system analysis", Smart Mater. Struct., 17(2), 025033, doi:10.1088/0964-1726/17/2/025033.
- Wilcox, P. (2004), "Modeling the excitation of Lamb and SH waves by point and line sources", AIP Conference Proc., 700, 206-213.
- Willberg, C., Vivar-Perez, J.M. and Gabbert, U. (2009a), "Lamb wave interaction with defects in homogeneous plates", Proceedings of the International Conference on Structural Engineering Dynamics (ICEDyn), Ericeira, Portugal. 22.-24. June.
- Willberg, C., Vivar-Perez, J.M., Ahmad, Z. and Gabbert, U. (2009b), "Simulation of piezoelectric induced Lamb wave motion in plates", Proceedings of the 7th International Workshop on Structural Health Monitoring 2009: From System Integration to Autonomous Systems.
- Willberg, C., Duczek, S., Vivar-Perez, J.M., Schmicker, D. and Gabbert, U. (2012), "Comparison of different higher order finite element schemes for the simulation of Lamb waves", Comput. Meth. Appl. Mech. Eng., 241-244, 246-261. https://doi.org/10.1016/j.cma.2012.06.011
- Xu, B., Shen, Z., Ni, X. and Lu, J. (2004), "Numerical simulation of laser-generated ultrasound by the finite element method", J. Appl. Phys., 95(4), 2116- 2121. https://doi.org/10.1063/1.1637712
- Yu, Z.S., Cai, Y.Z., Oh, M.J., Kim, T.W. and Peng, Q.S. (2006), "An efficient method for tracing planar implicit curves", J. Zhejiang University Sci. A, 7(7), 1115-1123. https://doi.org/10.1631/jzus.2006.A1115
피인용 문헌
- Slender piezoelectric beams with resistive-inductive electrodes - modeling and axial wave propagation vol.18, pp.2, 2016, https://doi.org/10.12989/sss.2016.18.2.335
- Numerical study on interface debonding detection mechanisms with 2D spectral element method for concrete-filled steel tube using embedded PZT sensor vol.27, pp.12, 2018, https://doi.org/10.1088/1361-665X/aae23b
- Simulation Methods for Guided Wave-Based Structural Health Monitoring: A Review vol.67, pp.1, 2014, https://doi.org/10.1115/1.4029539
- Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion vol.27, pp.4, 2014, https://doi.org/10.1088/1361-665x/aab162
- Theoretical and experimental investigation of Lamb waves excited by partially debonded rectangular piezoelectric transducers vol.29, pp.4, 2014, https://doi.org/10.1088/1361-665x/ab75a1
- Parallel spectral element method for guided wave based structural health monitoring vol.29, pp.9, 2014, https://doi.org/10.1088/1361-665x/ab9e10
- Influence of a delamination on Lamb wave excitation by a nearby piezoelectric transducer vol.32, pp.3, 2014, https://doi.org/10.1177/1045389x20919977
- On ultrasound propagation in composite laminates: advances in numerical simulation vol.129, pp.None, 2022, https://doi.org/10.1016/j.paerosci.2021.100791