DOI QR코드

DOI QR Code

Analytical and higher order finite element hybrid approach for an efficient simulation of ultrasonic guided waves I: 2D-analysis

  • Vivar-Perez, Juan M. (German Aerospace Center (DLR), Institute of Composite Structures and Adaptive Systems) ;
  • Duczek, Sascha (Otto-von-Guericke University of Magdeburg, Institute of Mechanics, Universitatsplatz) ;
  • Gabbert, Ulrich (Otto-von-Guericke University of Magdeburg, Institute of Mechanics, Universitatsplatz)
  • Received : 2013.04.02
  • Accepted : 2013.12.12
  • Published : 2014.04.25

Abstract

In recent years the interest in online monitoring of lightweight structures with ultrasonic guided waves is steadily growing. Especially the aircraft industry is a driving force in the development of structural health monitoring (SHM) systems. In order to optimally design SHM systems powerful and efficient numerical simulation tools to predict the behaviour of ultrasonic elastic waves in thin-walled structures are required. It has been shown that in real industrial applications, such as airplane wings or fuselages, conventional linear and quadratic pure displacement finite elements commonly used to model ultrasonic elastic waves quickly reach their limits. The required mesh density, to obtain good quality solutions, results in enormous computational costs when solving the wave propagation problem in the time domain. To resolve this problem different possibilities are available. Analytical methods and higher order finite element method approaches (HO-FEM), like p-FEM, spectral elements, spectral analysis and isogeometric analysis, are among them. Although analytical approaches offer fast and accurate results, they are limited to rather simple geometries. On the other hand, the application of higher order finite element schemes is a computationally demanding task. The drawbacks of both methods can be circumvented if regions of complex geometry are modelled using a HO-FEM approach while the response of the remaining structure is computed utilizing an analytical approach. The objective of the paper is to present an efficient method to couple different HO-FEM schemes with an analytical description of an undisturbed region. Using this hybrid formulation the numerical effort can be drastically reduced. The functionality of the proposed scheme is demonstrated by studying the propagation of ultrasonic guided waves in plates, excited by a piezoelectric patch actuator. The actuator is modelled utilizing higher order coupled field finite elements, whereas the homogenous, isotropic plate is described analytically. The results of this "semi-analytical" approach highlight the opportunities to reduce the numerical effort if closed-form solutions are partially available.

Keywords

References

  1. Achenbach, J.D. (1973), Wave propagation in elastic solids, (Eds. H.A. Lauwerier and W. T. Koiter), North-Holland Series in Applied Mathematics and Mechanics, volume 16, North Holland, Amsterdam, The Netherlands.
  2. Achenbach, J.D. (1998), "Lamb waves as thickness vibrations superimposed on a membrane carrier wave", J. Acoust. Soc. Am., 103(5), 2283-2286. https://doi.org/10.1121/1.422746
  3. Achenbach, J.D. (1999), "Wave motion in an isotropic elastic layer generated by a time-harmonic point load of arbitrary direction", J. Acoust. Soc. Am., 106(1), 83-90. https://doi.org/10.1121/1.427037
  4. Achenbach, J.D. and Xu, Y. (1999), "Use of elastodynamic reciprocity to analyze point-load generated axisymmetric waves in a plate", Wave Motion, 30(1), 57-67. https://doi.org/10.1016/S0165-2125(98)00050-X
  5. Achenbach, J.D. (2000), "Quantitative nondestructive evaluation", Int. J. Solids Struct., 37(1, 2), 13-27. https://doi.org/10.1016/S0020-7683(99)00074-8
  6. Achenbach, J.D. (2003), Reciprocity in elastodynamics, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, United Kindom.
  7. Ahmad, Z.A.B. (2011), Numerical simulations of waves in plates using a semi-analytical finite element method, Technical report: Fortschritt-Berichte VDI, Number 437 in Reihe 20-Rechnerunterstutze Verfahren. VDI Verlag.
  8. Ahmad, Z.A.B., Vivar-Perez, J.M., Willberg, C. and Gabbert, U. (2009), "Lamb wave propagation using wave finite element method", PAMM- Proc. Appl. Math. Mech., 9, 509-510. https://doi.org/10.1002/pamm.200910227
  9. Bartoli, I., Marzania, A., Lanza di Scalea, F. and Violab, E. (2006), "Modeling wave propagation in damped waveguides of arbitrary cross-section", J. Sound Vib., 295(3-5), 685-707. https://doi.org/10.1016/j.jsv.2006.01.021
  10. Bonnet, M. and Constantinescu, A. (2005), "Inverse problems in elasticity", Inverse Probl., 21(2), 1-50. https://doi.org/10.1088/0266-5611/21/1/001
  11. Boyd, J.P. (2000), Chebyshev and fourier spectral methods (2nd Ed.), Dover, New York, USA.
  12. Chakraborty, A. and Gopalakrishnan, S. (2004), "Wave propagation in inhomogeneous layered media: solution of forward and inverse problems", Acta Mech., 169, 153-185. https://doi.org/10.1007/s00707-004-0080-7
  13. Chang, Z. and Mal, A. (1999), "Scattering of Lamb waves from a rivet hole with edge cracks", Mech. Mater., 31(3), 197-204. https://doi.org/10.1016/S0167-6636(98)00060-X
  14. Delsanto, P.P., Whitcombe, T., Chaskelis, H.H. and Mignogna, R.B. (1992), "Connection machine simulation of ultrasonic wave propagation in materials. I: The one-dimensional case", Wave Motion, 16(1), 65-80. https://doi.org/10.1016/0165-2125(92)90047-6
  15. Delsanto, P.P., Schechter, R.S., Chaskelisb, H.H., Mignogna, R.B. and Kline, R. (1994), "Connection machine simulation of ultrasonic wave propagation in materials. II: The two-dimensional case", Wave Motion, 20(4), 295-314. https://doi.org/10.1016/0165-2125(94)90016-7
  16. Delsanto, P.P., Schechter, R.S. and Mignogna, R.B. (1997), "Connection machine simulation of ultrasonic wave propagation in materials III: The three-dimensional case", Wave Motion, 26(4), 329-339. https://doi.org/10.1016/S0165-2125(97)00013-9
  17. Doyle, J.F. (1997), Wave propagation in structures: spectral analysis using fast discrete Fourier transform. 2 edition, Mechanical Engineering Series, Springer, New York, USA.
  18. Duczek, S., Willberg, C., Schmicker, D. and Gabbert, U. (2012), "Development, validation and comparison of higher order finite element approaches to compute the propagation of Lamb waves efficiently", Key Eng. Mater., 518, 95-105. https://doi.org/10.4028/www.scientific.net/KEM.518.95
  19. Fornberg, B. (1998), A practical guide to pseudospectral methods, (Eds. P.G. Ciarlet, A. Iserles, R.V. Kohn, and M.H. Wright), Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, United Kindom.
  20. Galan, J.M. and Abascal, R. (2002), "Numerical simulation of Lamb wave scattering in semi-infinite plates", Int. J. Numer. Meth. Eng., 53(5), 1145-1173. https://doi.org/10.1002/nme.331
  21. Gazis, D.C. (1958), "Exact analysis of the plane-strain vibrations of thick-walled hollow cylinders", J. Acoust. Soc. Am., 30(8), 786-794. https://doi.org/10.1121/1.1909761
  22. Giurgiutiu, V. (2005), "Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring", J. Intel. Mat. Syst. Str., 16, 291-305. https://doi.org/10.1177/1045389X05050106
  23. Glushkov, E.V., Glushkova, N.V., Seemann, W. and Kvasha, O.V. (2006). "Elastic wave excitation in a layer by piezoceramic patch actuators", Acoust. Phys., 52(4), 398-407. https://doi.org/10.1134/S106377100604004X
  24. Glushkov, Y.V., Glushkova, N.V. and Krivonos, A.S. (2010), "The excitation and propagation of elastic waves in multilayered anisotropic composites", J. Appl. Math. Mech., 74(3), 297-305. https://doi.org/10.1016/j.jappmathmech.2010.07.005
  25. Gomilko, A.M., Gorodetskaya, N.S. and Meleshko, V.V. (1991), "Longitudinal Lamb waves in a semi-infinite elastic layer", Int. J. Appl. Mech., 27(6), 577-581.
  26. Gopalakrishnan, S. and Mitra, M. (2010), Wavelet methods for dynamical problems: with application to metallic, composite, and nano-composite structures, CRC Press Inc, Florida, USA.
  27. Gopalakrishnan, S., Chakraborty, A. and Mahapatra, D.R. (2008), Spectral finite element method, (Ed. K.J. Bathe), Computational Fluid and Solid Mechanics, volume XIV. Springer, New York, USA.
  28. Graff, K.F. (1975), Wave motion in elastic solids, Oxford University Press, London, United Kindom.
  29. Hayashi, T. and Kawashima, K. (2002), "Multiple reflections of Lamb waves at a delamination", Ultrasonics, 40(1-8), 193-197. https://doi.org/10.1016/S0041-624X(02)00136-1
  30. Holden, A. (1951), "Longitudinal modes of elastic waves in isotropic cylinders and slabs", Bell Syst. Technical J., 30(4), 956-969. https://doi.org/10.1002/j.1538-7305.1951.tb03691.x
  31. Huang, H., Pamphile, T. and Derriso, M. (2008), "The effect of actuator bending on Lamb wave displacement fields generated by a piezoelectric patch", Smart Mater. Struct., 17(5), 1-13.
  32. Jackson, J.D. (1998), Classsical electrodynamics (3rd Ed.), John Wiley & Sons, Inc. New York, USA.
  33. Jin, J., Quek, S.T. and Wang, Q. (2003), "Analytical solution of excitation of Lamb waves in plates by inter-digital transducers", P. Roy. Soc. Lond. A, 459(2033), 1117-1134. https://doi.org/10.1098/rspa.2002.1071
  34. Karmazin, A., Kirillova, E., Seemann, W. and Syromyatnikov, P. (2010), "Modelling of 3d steady-state oscillations of anisotropic multilayered structures applying the Green's functions", Adv. Theor. Appl. Mech., 3(9), 425-445.
  35. Karmazin, A., Kirillova, E., Seemann, W. and Syromyatnikov, P. (2011), "Investigation of Lamb elastic waves in anisotropic multilayered composites applying the Green's matrix", Ultrasonics, 51(1), 17-28. https://doi.org/10.1016/j.ultras.2010.05.003
  36. Kudela, P. and Ostachowicz, W.M. (2008), "Wave propagation modelling in composite plates", Appl. Mech. Mater., 9, 89-104. https://doi.org/10.4028/www.scientific.net/AMM.9.89
  37. Kudela, P. and Ostachowicz, W. M. (2009), "3D time-domain spectral elements for stress waves modelling", J. Physics, 181(1), 1-8.
  38. Lamb, H. (1917), "On waves in an elastic plate", P. Roy. Soc. A, 93, 114-128. https://doi.org/10.1098/rspa.1917.0008
  39. Lee, B.C. and Staszewski, W.J. (2003a), "Modelling of Lamb waves for damage detection in metallic structures: Part I. Wave propagation", Smart Mater. Struct., 12(5), 804-814. https://doi.org/10.1088/0964-1726/12/5/018
  40. Lee, B.C. and Staszewski, W.J. (2003b), "Modelling of Lamb waves for damage detection in metallic structures: Part II. Wave interactions with damage", Smart Mater. Struct., 12(5), 815-824. https://doi.org/10.1088/0964-1726/12/5/019
  41. Leonard, K.R., Malyarenko, E.V. and Hinders, M. K. (2002), "Ultrasonic Lamb wave tomography", Inverse Probl., 18(6), 1795-1808. https://doi.org/10.1088/0266-5611/18/6/322
  42. Liu, G.R. (2002), "A combined finite element/strip element method for analyzing elastic wave scattering by cracks and inclusions in laminates", Comput. Mech., 28(1), 76-81. https://doi.org/10.1007/s00466-001-0272-0
  43. Love, A.E. (1911), Some problems of geodynamics, Cambridge University Press, Cambridge, United Kindom.
  44. Loveday, P.W. (2007), "Analysis of piezoelectric ultrasonic transducers attached to waveguides using waveguide finite elements", IEEE T. Ultrason. Ferr., 54(10), 2045-2051. https://doi.org/10.1109/TUFFC.2007.499
  45. Lu, Y., Wang, X., Tang, J. and Ding, Y. (2008), "Damage detection using piezoelectric transducers and the Lamb wave approach: II. Robust and quantitative decision making", Smart Mater. Struct., 17(2), 025034, doi:10.1088/0964-1726/17/2/025034.
  46. Lyon, R.H. (1955), "Response of an elastic plate to localized driving forces", J. Acoust. Soc. Am., 27(2), 259-265. https://doi.org/10.1121/1.1907510
  47. Mindlin, R.D. (1951), "Thickness-shear and flexural vibrations of crystal plates", J. Appl. Phys., 22(3), 316-323. https://doi.org/10.1063/1.1699948
  48. Mindlin, R.D. and Medick, M.A. (1959), "Extensional vibrations of elastic plates", J. Appl. Mech. - T ASME, 26, 561-569.
  49. Mindlin, R.D. (1960), Waves and vibrations in isotropic elastic plates, (Eds. J.N. Goodier and N.J. Hoff) First Symposium on Naval Structural Machanics ,1958. Pergamon, Oxford .
  50. Morvan, B., Wilkie-Chancellier, N., Duflo, H., Trinel, A. and Duclos, J. (2003), "Lamb wave reflection at the free edge of a plate", J. Acoust. Soc. Am., 113(3), 1417-1425. https://doi.org/10.1121/1.1539521
  51. Muller, D.E. (1959), "A method for solving algebraic equations using an automatic computer", Math. Comput., 10(56), 208-215.
  52. Onoe, M.A. (1955), A study of the branches of the velocity-dispersion equations of elastic plates and rods, Technical report: Report Joint Commitee on Ultrasonics of the Institute of Electrical Communication engineers and the Acoustical society of Japan.
  53. Osborne, M.F.M. and Hart, S.D. (1945), "Transmission, reflection, and guiding of an exponential pulse by a steel plate in water. I. theory", J. Acoust. Soc. Am., 17(1), 1-18. https://doi.org/10.1121/1.1916293
  54. Ostachowicz, W.M., Kudela, P., Krawczuk, M. and Zak, A. (2012), Guided waves in structures for SHM: the time-domain spectral element method, John Wiley & Sons, Ltd, United Kindom.
  55. Peng, H., Meng, G. and Li., F. (2009), "Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection", J. Sound Vib., 320, 942-954. https://doi.org/10.1016/j.jsv.2008.09.005
  56. Raghavan, A. and Cesnik, C.E.S. (2004), "Modeling of piezoelectric-based Lamb wave generation and sensing for structural health monitoring", Proc. SPIE, 5391, 419-430.
  57. Raghavan, A. and Cesnik C.E.S. (2007), "Review of guided-wave structural health monitoring", Shock Vib., 39(2), 91-114. https://doi.org/10.1177/0583102406075428
  58. Rayleigh, L. (1885), "Waves propagated along the plane surface of an elastic solid", Proc. London Math. Soc., 20, 225-234.
  59. Rose, J.L. (2002), "A baseline and vision of ultrasonic guided wave inspection potential", J. Press. Vessel T. - ASME, 124(3), 273-282. https://doi.org/10.1115/1.1491272
  60. Royer, D. and Dieulesaint, E. (2000), Elastic waves in solids I: free and guided propagation, Springer, Berlin, Germany.
  61. Sirohi, J. and Chopra, I. (2000), "Fundamental understanding of piezoelectric strain sensors", J. Intel. Mater. Syst. Str., 11, 246-247. https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0
  62. Su, Z. and Ye, L. (2009), Identification of damage using Lamb waves. from fundamentals to applications, (Eds. F. Pfeiffer and P. Wriggers), Lecture Notes in Applied and Computational Mechanics, volume 48, Springer, London, United Kindom.
  63. Sun, J.H. and Wu, T.T. (2009), "A Lamb wave source based on the resonant cavity of phononic-crystal plates", IEEE T. Ultrason. Ferr., 59(1), 121-128.
  64. Tian, J., Gabbert, U., Berger, H., and Su, X. (2004), "Lamb wave interaction with delaminations in CFRP laminate", Comput. Mater. Continua, 1(4), 327-336.
  65. Trefethen, L.M. (2000), Spectral methods in MATLAB. SIAM, USA.
  66. Velichko, A. and Wilcox, P.D. (2007), "Modeling the excitation of guided waves in generally anisotropic multilayered media", J. Acoust. Soc. Am., 121(1), 60-69. https://doi.org/10.1121/1.2390674
  67. Viktorov, I.A. (1967), Rayleigh and Lamb waves: physical theory and applications, Plenum Press, New York, USA.
  68. Vivar-Perez, J.M. (2012), Analytical and spectral methods for the simulation of elastic waves in thin plates, Technical Report: Number 441 in Reihe 20, Fortschrit- Berichte VDI. VDI Verlag.
  69. Vivar-Perez, J. M., Willberg, C. and Gabbert, U. (2009a), "Simulation of piezoelectric induced Lamb waves in plates", PAMM-Proc. Appl. Math. Mech., 9, 503-504. https://doi.org/10.1002/pamm.200910224
  70. Vivar-Perez, J.M., Willberg, C. and Gabbert, U. (2009b), "Simulation of piezoelectric Lamb waves in plate structures", Proceedings of the International Conference on Structural Engineering Dynamics. ICEDyn Ericeira, Portugal. 22.-24. June.
  71. von Ende, S., Schafer, I. and Lammering, R. (2007), "Lamb wave excitation with piezoelectric wafers - an analytical approach", Acta Mech., 193(3-4), 141-150. https://doi.org/10.1007/s00707-006-0434-4
  72. Von Ende, S. and Lammering, R. (2007), "Investigation on piezoelectrically induced Lamb wave generation and propagation", Smart Mater. Struct., 16(5), 1802-1809. https://doi.org/10.1088/0964-1726/16/5/035
  73. von Ende, S. and Lammering, R. (2009), "Modeling and simulation of Lamb wave generation with piezoelectric plates", Mech. Adv. Mater. Struct., 16(3), 188-197. https://doi.org/10.1080/15376490902746780
  74. Wang, X., Lu, Y. and Tang, J. (2008), "Damage detection using piezoelectric transducers and the Lamb wave approach: I. system analysis", Smart Mater. Struct., 17(2), 025033, doi:10.1088/0964-1726/17/2/025033.
  75. Wilcox, P. (2004), "Modeling the excitation of Lamb and SH waves by point and line sources", AIP Conference Proc., 700, 206-213.
  76. Willberg, C., Vivar-Perez, J.M. and Gabbert, U. (2009a), "Lamb wave interaction with defects in homogeneous plates", Proceedings of the International Conference on Structural Engineering Dynamics (ICEDyn), Ericeira, Portugal. 22.-24. June.
  77. Willberg, C., Vivar-Perez, J.M., Ahmad, Z. and Gabbert, U. (2009b), "Simulation of piezoelectric induced Lamb wave motion in plates", Proceedings of the 7th International Workshop on Structural Health Monitoring 2009: From System Integration to Autonomous Systems.
  78. Willberg, C., Duczek, S., Vivar-Perez, J.M., Schmicker, D. and Gabbert, U. (2012), "Comparison of different higher order finite element schemes for the simulation of Lamb waves", Comput. Meth. Appl. Mech. Eng., 241-244, 246-261. https://doi.org/10.1016/j.cma.2012.06.011
  79. Xu, B., Shen, Z., Ni, X. and Lu, J. (2004), "Numerical simulation of laser-generated ultrasound by the finite element method", J. Appl. Phys., 95(4), 2116- 2121. https://doi.org/10.1063/1.1637712
  80. Yu, Z.S., Cai, Y.Z., Oh, M.J., Kim, T.W. and Peng, Q.S. (2006), "An efficient method for tracing planar implicit curves", J. Zhejiang University Sci. A, 7(7), 1115-1123. https://doi.org/10.1631/jzus.2006.A1115

Cited by

  1. Slender piezoelectric beams with resistive-inductive electrodes - modeling and axial wave propagation vol.18, pp.2, 2016, https://doi.org/10.12989/sss.2016.18.2.335
  2. Numerical study on interface debonding detection mechanisms with 2D spectral element method for concrete-filled steel tube using embedded PZT sensor vol.27, pp.12, 2018, https://doi.org/10.1088/1361-665X/aae23b
  3. Simulation Methods for Guided Wave-Based Structural Health Monitoring: A Review vol.67, pp.1, 2014, https://doi.org/10.1115/1.4029539
  4. Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion vol.27, pp.4, 2014, https://doi.org/10.1088/1361-665x/aab162
  5. Theoretical and experimental investigation of Lamb waves excited by partially debonded rectangular piezoelectric transducers vol.29, pp.4, 2014, https://doi.org/10.1088/1361-665x/ab75a1
  6. Parallel spectral element method for guided wave based structural health monitoring vol.29, pp.9, 2014, https://doi.org/10.1088/1361-665x/ab9e10
  7. Influence of a delamination on Lamb wave excitation by a nearby piezoelectric transducer vol.32, pp.3, 2014, https://doi.org/10.1177/1045389x20919977
  8. On ultrasound propagation in composite laminates: advances in numerical simulation vol.129, pp.None, 2022, https://doi.org/10.1016/j.paerosci.2021.100791