References
- Bailey, T. and Hubbard, J. (1985), "Distributed piezoelectric polymer active vibration control of a cantilever beam", AIAA J., 8(5), 605-611.
- Ballhause, D., D'Ottavio, M., Kroplin, B. and Carrera, E. (2005), "A unified formulation to assess multilayered theories for piezoelectric plates", Comput. Struct., 83(15-16), 1217-1235. https://doi.org/10.1016/j.compstruc.2004.09.015
- Bathe, K. (1996), Finite element procedure, Prentice hall.
- Beheshti-Aval, S., Lezgy-Nazargah, M., Vidal, P. and Polit, O. (2011), "A refined sinusfinite element model for the analysis of piezoelectric-laminated beams", J. Intel. Mat. Syst. Str., 22(3), 203-210. https://doi.org/10.1177/1045389X10396955
- Biscani, F., Nali, P., Belouettar, S. and Carrera, E. (2012), "Coupling of hierarchical piezo-electric plate finite elements via arlequin method", J. Intel. Mat. Syst. Str., 23(7), 749-764. https://doi.org/10.1177/1045389X12437885
- Carrera, E. (1997), "An improved Reissner-Mindlin-Type model for the electromechanical analysis of multilayered plates including piezo-layers" J. Intel. Mat. Syst. Str., 8(3)232-248.
- Carrera, E. and Boscolo, M. (2006), "Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates", Int. J. Numer. Meth. Eng., 70(10), 1135-1181.
- Carrera, E. and Giunta, G. (2010), "Refined beam theories based on a unified formulation", Int. J. Appl. Mech., 2(1), 117-143. https://doi.org/10.1142/S1758825110000500
- Carrera, E., Giunta, G., Nali, P. and Petrolo, M. (2010), "Refined beam elements with arbitrary cross-section geometries", Comput. Struct., 88(5-6), 283-293. https://doi.org/10.1016/j.compstruc.2009.11.002
- Carrera, E. and Petrolo, M. (2011), "On the effectiveness of higher-order terms in refined beam theories", J. Appl. Mech. - T ASME, 7 (2), 021013, doi:10.1115/1.4002207.
- Carrera, E., Biscretto, S. and Nali, P. (2011), Plates and shells for smart structures, JohnWiley and sons.
- Carrera, E. and Petrolo, M. (2012), "Refined beam elements with only displacement variables and plate/shell capabilities", Meccanica, 47(3), 537-556. https://doi.org/10.1007/s11012-011-9466-5
- Carrera, E., Petrolo, M. and Nali, P. (2011), "Unified formulation applied to free vibrations finite element analysis of beams with arbitrary section", Shock Vib., 18(3), 485-502. https://doi.org/10.1155/2011/706541
- Carrera, E., Petrolo, M. and Varello, A. (2012a), "Advanced beam formulations for free vibrations analysis of conventional and joined wings", J. Aerospace Eng., 25(2), 282-293. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000130
- Carrera, E., Zappino, E. and Petrolo, M. (2012b), "Advanced elements for the static analysis of beams with compact and bridge-like sections", J. Struct. Eng. - ASCE, 56, 49-61.
- Caruso, G., Galeani, S. and Menini, L. (2003), "Active vibration control of an elastic plate using multiple piezoelectric sensors and actuators", Simul. Model. Pract. Th., 11(5-6), 403-419. https://doi.org/10.1016/S1569-190X(03)00056-X
- Chee, C., Tong, L. and Steven, G. (1999), "A mixed model for composite beams with piezoelectric actuators and sensors", Smart Mater. Struct., 8(3), 417, doi:10.1088/0964-1726/8/3/313.
- Crawley, E. and Luis, J. (1987), "Use of piezoelectric actuators as elements of intelligent structures", AIAA J., 25(10), 1373-1385. https://doi.org/10.2514/3.9792
- Dong, X.J., Meng, G. and Peng, J.C. (2006), "Vibration control of piezoelectric actuators smart structures based on system identification technique: numerical simulation and experimental study", J. Sound Vib., 297(3-5), 680-693. https://doi.org/10.1016/j.jsv.2006.04.021
- Elshafei, M. and Alraiess, F. (2013), "Modeling and analysis of smart piezoelectric beams using simple higher order shear deformation theory", Smart Mater. Struct., 22(3), doi:10.1088/0964-1726/22/3/035006.
- Hwang, W. and Park, H. (1993), "Finite element modelling of piezoelectric sensors and actuators", AIAA J., 31(5), 930-937. https://doi.org/10.2514/3.11707
- Kim, T.W. and Kim, J.H. (2005), "Optimal distribution of an active layer for transient vibration control of an flexible plates", Smart Mater. Struct., 14(5), 904-916. https://doi.org/10.1088/0964-1726/14/5/027
- Krommer, M. (2003), "Piezoelestic vibrations of composite Reissner-Mindlin-type plates", J. Sound Vib., 263(4), 871-891. https://doi.org/10.1016/S0022-460X(02)01169-0
- Kumar, K. and Narayanan, S. (2007), "The optimal location of piezolectric actuators and sensors for vibration controls of plate", Smart Mater. Struct., 16(6), 2680-2691. https://doi.org/10.1088/0964-1726/16/6/073
- Kusculuoglu, Z.K. and Royston, T.J. (2005), "Finite element formulation for composite plates with piezoceramic layers for optimal vibration control applications", Smart Mater. Struct., 14(6), 1139-1153. https://doi.org/10.1088/0964-1726/14/6/007
- Liu, G., Dai, K. and Lim, K. (2004), "Static and vibration control of composite laminates integrated with piezoelectric sensors and actuators using radial point interpolation method", Smart Mater. Struct., 13(6), 1438-1447. https://doi.org/10.1088/0964-1726/13/6/015
- Marinkovic, D., Koppe, H. and Gabber, H. (2007), "Accurate modelling of the electric field within piezoelectric layers for active composite structures", J. Intel. Mat. Syst. Str., 18(5), 503-513. https://doi.org/10.1177/1045389X06067139
- Moita, J., Soares, C. and Soares, C. (2005), "Active control of forced vibration in adaptive structures using a higher order model", Compos. Struct., 71(3-4), 349-355. https://doi.org/10.1016/j.compstruct.2005.09.009
- Moitha, J., Correira, I., Soares, C. and Soares, C. (2004), "Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators", Comput. Struct., 82(17-19), 1349-1358. https://doi.org/10.1016/j.compstruc.2004.03.030
- Onate, E. ( 2009), Structural analysis with the finite element method: linear statics, Springer.
- Robbins, D. and Reddy, J. (1991a), "Analysis of piezoelectrically actuated beam using a layer-wise displacements theory", Comput. Struct., 41(2), 265-279. https://doi.org/10.1016/0045-7949(91)90430-T
- Robbins, D. and Reddy, J. (1991b), "Analysis of piezoelectrically actuated beams using a layer-wise displacement theory", Comput. Struct., 41(2), 265-279. https://doi.org/10.1016/0045-7949(91)90430-T
- Sarvanos, D. and Heyliger, P. (1995), "Coupled layer wise analysis of composite beams with embedded piezoelectric sensors and actuators", J. Intel. Mat. Syst. Str., 6(3), 350-363. https://doi.org/10.1177/1045389X9500600306
- Sarvanos, D. and Heyliger, P. (1999), "Mechanics and computational models for laminated piezoelectric beams, plate, and shells", Appl. Mech. Rev., 52(10), 305-320. https://doi.org/10.1115/1.3098918
- Sarvanos, D.A. (1997), "Mixed laminate theory and finite element for smart piezoelectric composite shell structures", AIAA J., 35(8), 1327-1333. https://doi.org/10.2514/2.264
- Tzou, H. and Ye, R. (1996), "Analysis of piezoelastic structures with laminated piezoelectric triangle shell elements", AIAA J., 34(1), 110-115. https://doi.org/10.2514/3.12907
- Tzou, H. and Tseng, C. (1990), "Distributed vibration control and identification of coupled elastic/piezoelectric systems: finite element formulation and applications", Mech. Syst. Signal Pr., 5(3), 215-231.
- Umesh, K. and Ganguli, R. (2009), "Shape vibration control of smart plate with matrix cracks", Smart Mater. Struct., 18(2), 1-13.
- Valey, D. and Rao, S. (1994), Two-dimensional finite element modeling of composites with embedded piezoelectrics, Collection Tech. Papers Proc. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf. 5, 2629-2633.
- Vasques, C. and Rodrigues, J. (2006), "Active vibration of smart piezoelectric beams: comparison of classical and optimal feedback control strategies", Comput. Struct., 84(22-23),1459-1470. https://doi.org/10.1016/j.compstruc.2006.01.014
- Vidal, P., D'Ottavio, M., Thaier, M. and Polit, O. (2011), "An efficient finite shell element for the static resposne of piezoelectric laminates", J. Intel. Mat. Syst. Struct., 22(7),671. https://doi.org/10.1177/1045389X11402863
- Xu, S. and Koko, T. (2004), "Finite element analysis and design of actively a controlled piezoelectric smart structure", Finite Elem. Anal. Des., 40(3), 241-262. https://doi.org/10.1016/S0168-874X(02)00225-1
- Yasin, M.Y., Ahmad, N. and Alam, M.N. (2010), "Finite element analysis of actively controlled smart plate with patched actuators and sensors", Latin Am. J. Solids Struct., 7, 227-247. https://doi.org/10.1590/S1679-78252010000300001
- Yocum, M. and Abramovich, H. (2002), "Static behaviour of piezoelectric actuated beams", Comput. Struct., 80(23), 1797-1808. https://doi.org/10.1016/S0045-7949(02)00206-7
- Zhou, X., Chattopadhyay, A. and Gu, H. (2000), "Dynamic response of smart composites using a coupled thermo-piezoelectric-mechanical model", AIAA J., 38(10), 1939-1948. https://doi.org/10.2514/2.848
Cited by
- Numerical analyses of piezoceramic actuators for high temperature applications vol.151, 2016, https://doi.org/10.1016/j.compstruct.2016.01.084
- Analysis of beams with piezo-patches by node-dependent kinematic finite element method models 2017, https://doi.org/10.1177/1045389X17733332
- Improved one-dimensional model of piezoelectric laminates for energy harvesters including three dimensional effects vol.127, 2015, https://doi.org/10.1016/j.compstruct.2015.02.065
- Recent developments on refined theories for beams with applications vol.2, pp.2, 2015, https://doi.org/10.1299/mer.14-00298
- Structural Control of Piezoelectric Laminated Beams under Thermal Load vol.38, pp.1, 2015, https://doi.org/10.1080/01495739.2014.976138
- Application of refined beam elements to the coupled-field analysis of magnetostrictive microbeams vol.115, 2017, https://doi.org/10.1016/j.compositesb.2016.10.055
- Thermo-piezo-elastic analysis of amplified piezoceramic actuators using a refined one-dimensional model 2018, https://doi.org/10.1177/1045389X17721026
- Node-dependent kinematic elements for the dynamic analysis of beams with piezo-patches vol.29, pp.16, 2018, https://doi.org/10.1177/1045389X18798942