DOI QR코드

DOI QR Code

Microbial Prevalence and Quality of Organic Farm Produce from Various Production Sites

생산지 수집 신선 유기농 농산물 미생물 분포도 분석

  • Park, Won-Jung (Department of Food Science and Biotechnology, Gachon University) ;
  • Ryu, Hwa-Yeon (Department of Food Science and Biotechnology, Gachon University) ;
  • Lim, Ga-Yeon (Department of Food Science and Biotechnology, Gachon University) ;
  • Lee, Young-Duck (Department of Food Science and Engineering, School of Convergence, Bioscience and Technology, Seowon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, Gachon University)
  • 박원정 (가천대학교 식품생물공학과) ;
  • 류화연 (가천대학교 식품생물공학과) ;
  • 임가연 (가천대학교 식품생물공학과) ;
  • 이영덕 (서원대학교 식품공학과) ;
  • 박종현 (가천대학교 식품생물공학과)
  • Received : 2013.12.04
  • Accepted : 2014.01.24
  • Published : 2014.04.30

Abstract

To analyze the presence of microbes in organic farm produce, green chillies, lettuce, tomatoes, apples, pears, and rice were collected at 47 production sites with organic and conventional produce. Total average bacterial counts of 4.07 log CFU/g in organic green chillies, 3.71 log CFU/g in conventional green chillies, and 6.76- 6.90 log CFU/g in the both lettuce were detected. Mean bacterial counts of 4.48 log CFU/g and 2.84 log CFU/g were detected in organic and conventional pear produce, respectively. Differences in bacterial counts in tomatoes, apples, and rice in organic and conventional produce were less pronounced. Clostridium perfringens, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus were not detected in any produce sample. However, Bacillus cereus was detected with average counts of 1.04 log CFU/g in 11/47 (23%) conventional produce samples and 1.97 log CFU/g in 6/47 (13%) organic produce samples. Therefore, organic and conventional produce showed similar microbial prevalence patterns, and comparable safety in terms of pathogen contamination.

신선편이식품 소재인 유기농산물의 미생물 분포와 품질을 평가하기 위해서 풋고추, 상추, 토마토, 사과, 배, 쌀 등의 농산물을 47개 지역에서 관행농 농산물과 동시에 현장에서 시료를 수집하였다. 일반 세균수로는 유기농 고추가 평균 4.07 log CFU/g, 관행농 고추는 3.71 log CFU/g 검출되었고 상추는 유기농, 관행농에서 6.76-6.90 log CFU/g로 분석되었다. 토마토와 사과는 2종류 시료에서 각각 2.08-2.92 log CFU/g, 0.70-0.82 log CFU/g로 검출되었다. 쌀도 유기농과 관행농 시료에서 2.92-2.98 log CFU/g 범위의 세균분포를 보여주었으나 유기농 배에서는 4.48 log CFU/g, 관행농 배는 2.84 log CFU/g의 분포도를 보여 주었다. 분석시료에 따라 미생물의 분포에 많은 차이를 보여 주었으며 유기농과 관행농산물의 미생물분포는 거의 차이가 없었다. 병원성 세균인 Cl. perfringens, E. coli O157:H7, L. monocytogenes, Salmonella, S. aureus은 전혀 검출되지 않았다. 그러나 유기농산물 2개(4%)와 관행농산물 3개(6%)에서 E. coil가 1.7 log CFU/g으로 검출되었고 B. cereus는 유기농 6개(13%)가 1.97 log CFU/g수준으로, 관행농 11개(23%)에서 1.04 log CFU/g 수준으로 검출되었다. 그러므로 유기농산물과 관행농산물에서의 일반세균과 병원성 세균의 오염정도는 차이가 거의 없고 이들 병원성 미생물의 오염수준도 비교적 낮아 안전한 것으로 판단된다.

Keywords

References

  1. Ahn YS, Shin DH. Antimicrobial effects of organic acids and ethanol on several foodborne microorganism. Korean J. Food Sci. Technol. 31: 1315-1323 (1999)
  2. Jung SH, Hur MJ, Ju JH, Kim KA, Oh SS, Go JM, Kim YH, Im JS. Microbiological evaluation of raw vegetables. J. Fd. Hyg. Safety 21:250-257 (2006)
  3. Kang TM, Cho SK, Park JY, Song KB, Chung MS, Park JH. Analysis of microbial contamination of sprouts and fresh cut salads in a market. Korean J. Food Sci. Technol. 43: 490-494 (2011) https://doi.org/10.9721/KJFST.2011.43.4.490
  4. Stephenson J. New approaches for detecting and curtailing foodborne microbial infections. J. Am. Med. Assoc. 277:1337-1339 (1997) https://doi.org/10.1001/jama.1997.03540410015004
  5. Lammerding AM. An overview of microbial food safety risk assessment. J. Food Protect. 60: 1420-1425 (1997)
  6. Frank C, Werber D, Cramer JP, Askar M, Faber M, Heiden M, Bernard H, Fruth A, Prager R, Spode A , Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, Muller L, King LA, Rosner B, Buchholz U, Stark K, Krause G. Epidemic profile of shiga-toxinproducing Escherichia coli O104:H4 outbreak in Germany. New Engl. J. Med. 365: 1771-1780 (2011) https://doi.org/10.1056/NEJMoa1106483
  7. Lomonaco S, Verghese B, Gerner-Smidt P, Tarr C, Gladney L, Joseph L, Katz L, Turnsek M, Frace M, Chen Y, Brown E, Meinersmann R, Berrang M, Knabel S. Novel epidemic clones of Listeria monocytogenes, United States. Emerg. Infect. Dis. 19: 147-150 (2013) https://doi.org/10.3201/eid1901.121167
  8. Adams M, Hartley A, Cox L. Factors affection the efficacy if washing procedure used in the production of prepared salads. Food Microbiol. 6: 69-77 (1989) https://doi.org/10.1016/S0740-0020(89)80039-5
  9. Sivapalasingam S, Friedman RC, Cohen L, Tauxe RV. Fresh produce: A growing cause of outbreak of foodborne illness in the United States, 1973 through 1997. J. Food Protect. 67: 2342-2353 (2004)
  10. Soriano JM, Rico HM, Molto JC, Manes MJ. Incidence of microbial flora in lettuce, meat and Spanish potato omelett from restaurant. Food Microbiol. 18: 159-163 (2001)
  11. Beuchat LR. Listeria monocytogenes incidence on vegetable. Food Control 7: 223-228 (1996) https://doi.org/10.1016/S0956-7135(96)00039-4
  12. Burnett SL, Beuchat LR. Human pathogens associated with raw produce and unpasteurized juices, and difficulties in decontamination. J. Ind. Microbiol. Biotechnol. 27: 104-110 (2001) https://doi.org/10.1038/sj.jim.7000199
  13. Ministry of Food and Drug Safety. Food poisoning outbreak DB. Available from: http://www.fse.foodnara.go.kr. Accessed Nov. 28, 2013.
  14. Mantynen V, Lindstom K. A Rapid PCR-based DNA test for enterotoxic Bacillus cereus. Appl. Environ. Microbiol. 64: 1634-1694 (1998)
  15. Muller EE, Ehlers MM, Grabow WOK. The occurrence of E.coli O157:H7 in South African water sources intended for direct and indirect human consumption. Water Res. 35: 3085-3088 (2001) https://doi.org/10.1016/S0043-1354(00)00597-2
  16. Jung KS, Roh EJ, Ryu KR, Kim WI, Park KH, Lee DH, Kim KH, Yun JC, Heu SG. Monitoring of pathogenic bacteria in organic vegetables from Korean market. Korean J. Soil Sci. Fert. 45: 560-564 (2012) https://doi.org/10.7745/KJSSF.2012.45.4.560
  17. Bae YM, Hong YJ, Kang DH, Heu SG, Lee SY. Microbial and pathogenic contamination of ready-to-eat fresh vegetables in Korea. Korean J. Food Sci. Technol. 43:161-168 (2011) https://doi.org/10.9721/KJFST.2011.43.2.161
  18. Oliveira, M, Usall J, Vinas I, Anguera M, Gatius F, Abadias M. Microbiological quality of fresh lettuce from organic and conventional production. Food Microbiol. 27: 679-684 (2010) https://doi.org/10.1016/j.fm.2010.03.008
  19. Cho JI, Bahk GJ, Kim KS, Ha SD. Microbial assessment of wild cabbage and its control. Korean J. Food Sci. Technol. 36: 162-167 (2004)
  20. Kim SH, Kim JS, Choi JP, Park JH. Prevalence and frequency of food-borne pathogens on unprocessed agricultural and marine products. Korean J. Food Sci. Technol. 38: 594-598 (2006)
  21. Nguz K, Shindano J, Samapundo S, Huyghebaert A. Microbiogical evaluation of fresh-cut organic vegetables produced in Zambia. Food Control 16: 623-628 (2005) https://doi.org/10.1016/j.foodcont.2004.07.001
  22. Sorberg M, Miskimin DK, Kramer R, Riha WE, Franke WC. Buchanan RL, O'Leary V, Berkowitz K. Assurannce of microbiological safety in a university feeding system. J. Milk Food Technol. 39: 200-205 (1976)
  23. Beuchat LR, Harris LJ, Ward TE, Kajs TM. Development of a proposed standard method for assessing the efficacy of fresh produce sanitizer. J. Food Protect. 64: 1103-1109 (2001)
  24. Cho SK, Park JH. Microbial contamination analysis for drinking water, foodstuff, and cooked food for foodservice operation. Korean J. Food Sci. Technol. 44: 478-483 (2012) https://doi.org/10.9721/KJFST.2012.44.4.478
  25. Bae HJ. Analysis of contamination of bacteria from raw materials, utensils and worker's hands to prepared foods in foodservice operations. J. Korean Soc. Food Sci. Nutr. 35: 655-660 (2006) https://doi.org/10.3746/jkfn.2006.35.5.655
  26. Mukherjee A, Speh D, Dyck E, Diez-Gonzalez F. Preharvest evaluation of coliforms, Escherichia coli, Salmonella, and Escherichia coli O157:H7 in organic and conventional produce grown by Minnesota farmers. J. Food Protect. 67: 894-900 (2004)
  27. Loncarevic S, Johannessen GS, Rorvik LM. Bacteriological quality of organically grown leaf lettuce in Norway. Lett. Appl. Microbiol. 41: 186-189 (2005) https://doi.org/10.1111/j.1472-765X.2005.01730.x
  28. Bohaychuk VM, Bradbury RW, Dimock R, Fehr M, Gensler GE, King RK, Rieve R, Romero BP. A microbiological survey of selected Alberta-grown fresh produce from farmers' markets in Alberta, Canada. J. Food Protect. 72: 415-420 (2009)
  29. Shin WS, Hong WS, Lee KE. Assessment of microbiologicla quality for raw materials and cooked foods in elementary school food establishment. J. Korean Soc. Food Sci. Nutr. 37: 379-389 (2008) https://doi.org/10.3746/jkfn.2008.37.3.379
  30. Littel CL, Omotoye R, Mitchell RT. The microbiological quality of ready-to-eat foods with added spices. Int. J. Environ. Heal. R. 13: 31-42 (2003) https://doi.org/10.1080/0960312021000063331
  31. Jang JH, Lee NA, Woo GJ, Park JH. Prevalence of Bacillus cereus group in rice and distribution of enterotoxin genes. Food Sci. Biotechnol. 15: 232-237 (2006)
  32. Choi SK, Kwon HS, Park JH. Microbe and quality changes of ready-to-eat lettuce during storage at different temperatures. J. Korean Soc. Food Sci. Nutr. 39: 1867-1872 (2010) https://doi.org/10.3746/jkfn.2010.39.12.1867
  33. Fleet GH. Spoilage yeasts. Crit. Rev. Biotechnol. 12:1-44 (1922)

Cited by

  1. , and coliforms Isolated from Agricultural Products vol.47, pp.3, 2017, https://doi.org/10.4167/jbv.2017.47.3.139
  2. Changes of Microbial Populations on Major Leafy Vegetables Cultivated by Different Methods from Production to Washing Stages vol.33, pp.1, 2018, https://doi.org/10.13103/JFHS.2018.33.1.38