DOI QR코드

DOI QR Code

유전자변형 β-carotene 강화 쌀의 생체 이용과 영양기능성 탐색

Assessment of the Bioavailability and Nutritive Function of Genetically Modified β-Carotene-biofortified Rice by Using Wistar Rats

  • 투고 : 2013.10.01
  • 심사 : 2013.12.31
  • 발행 : 2014.04.30

초록

본 연구에서는 ${\beta}$-carotene 강화쌀의 생체이용율과 영양기능성을 모종쌀과 비교하였다. 실험동물은 수컷 Wistar 흰쥐를 사용하였고, Harlan 2018S-diet를 기본 식이로 하였다. 실험 식이는 낙동쌀(모종쌀), ${\beta}$-carotene 강화쌀(GM쌀) 및 Harlan 2018S-diet(대조군)으로 하였고, 실험군당 11마리씩 배정하였다. 실험식이에 함유된 전분 함량은 모종쌀과 GM쌀로 각각 30% 대체하였고, 펠렛 식이로 재성형하여 4주 동안 급여하였다. 실험기간동안 GM쌀의 급여는 모종쌀과 비교시 흰쥐에게 식이섭취량이나 체중 증가와 같은 일반적인 성장에 부정적인 영향을 주지 않았다. 간, 신장, 비장, 체지방 등의 6개 장기의 무게를 측정한 결과 GM쌀은 모종쌀 식이 섭취군과 비교시 유의적인 차이가 없었다. 간지질중 총콜레스테롤(TC) 함량은 GM쌀 식이군이 모종쌀 식이군 보다 유의하게 낮았고, 분변지질(TC, TG) 농도 역시 GM쌀 식이군이 모종쌀 식이군에 비해 낮았다. 혈청생화학치와 혈구세포의 변화를 살펴보면 전반적으로 두 실험군(모종쌀, GM쌀) 간의 차이가 없었으나, 혈청지질 농도는 GM쌀 식이군이 모종쌀 식이군 보다 낮았고, 공복혈당은 GM쌀 식이군이 모종쌀 식이군 보다 통계적으로 유의하게 낮았다. 위의 결과들을 종합하면 GM쌀은 모종쌀에 비해 생체이용 측면에서 성장률과 장기무게 및 체지방 등에서 차이가 없었고, 영양기능 측면에서는 배변량을 증가시키고, 간과 분변 및 혈중 지질농도를 낮추며, 공복혈당치를 유의하게 감소시키는 것으로 나타났다.

The purpose of this study was to investigate the bioavailability and nutritive functions of Nak-Dong rice or genetically modified ${\beta}$-carotene-biofortified rice (GM rice) in an experimental animal model. Wistar rats fed either GM rice or Nak-Dong rice did not show differences in bioavailability, growth, organ weights, or visceral fat, suggesting that the nutrient content of GM rice is compositionally equivalent to that of conventional Nak-Dong rice. In addition, GM rice showed improved nutritive function in terms of increased defecation, decreased lipids, and decreased blood glucose.

키워드

참고문헌

  1. Bedo Z, Rakszegi M, Lang L. Design and management of field trials of transgenic cereals. Methods Mol. Biol. 478: 305-314 (2009) https://doi.org/10.1007/978-1-59745-379-0_18
  2. James C. Global status of commercialized biotech/GM crops. ISAAA Briefs No. 37-2007. ISAAA, Ithaca, NY, USA (2007)
  3. Woo HJ, Lim SH, Lee KJ, Won SY, Kim TS, Cho HS, Jin YM. Current development status on the genetically modified crops in Korea. Korean J. Intl. Agri. 18: 221-229 (2006)
  4. Juliano BO, Bechtel DB. The rice grain and its gross composition. pp. 37-50 In: Rice Chemistry and Technology. Juliano BO (ed). AACC, St. Paul, MN, USA (1985)
  5. Yonekura-Saakakibara K, Saito K. Review: Genetically modified plants for the promotion of human health. Biotechnol. Lett. 28: 1983-1991 (2006) https://doi.org/10.1007/s10529-006-9194-4
  6. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303-305 (2000) https://doi.org/10.1126/science.287.5451.303
  7. Hoa TT, Al-Babili S, Schaub P, Potrykus I, Beyer P. Golden Indica and Japonica rice lines amenable to deregulation. Plant Physiol. 133: 161-169 (2003) https://doi.org/10.1104/pp.103.023457
  8. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23: 482-487 (2005) https://doi.org/10.1038/nbt1082
  9. Dawe D, Robertson R, Unnevehr L. Golden rice: What role could it play in alleviation of vitamin A deficiency? Food Policy 27: 541-560 (2002) https://doi.org/10.1016/S0306-9192(02)00065-9
  10. Zhu C, Sanahuja G, Yuan D, Farre G, Arjo G, Berman J, Zorrilla-Lopez U, Banakar R, Bai C, Perez-Massot E, Bassie L, Capell T, Christou P. Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnol. J. 11: 129-141 (2013) https://doi.org/10.1111/j.1467-7652.2012.00740.x
  11. Tanaka T, Shnimizu M, Moriwaki H. Cancer chemoprevention by carotenoids. Molecules 17: 3202-3242 (2012) https://doi.org/10.3390/molecules17033202
  12. Lee KP, Kim DH, Kweon SJ, Baek HJ, Ryu TH. Risk assessment and variety registration of transgenic crops. J. Plant Biotechnol. 35: 13-21 (2008) https://doi.org/10.5010/JPB.2008.35.1.013
  13. OECD. Safety Considerations of Foods Derived by Modern Biotechnology: Concepts and Principle. Organization for Economic Co-operation and Development, Paris, France (1993)
  14. Kim HC, Kim HM. Risk assessment of genetically modified organism. J. Toxicol. Pub. Health 19: 1-12 (2003)
  15. Lee SH, Park HJ, Cho SY, Chun HK, Park YH, Jeong MH, Park SH. Evaluation of nutritional safety for the herbicide-resistant rice in growing male rats. Korean J. Nutr. 36: 1030-1035 (2003)
  16. Park SJ, Jeong MH, Park KH, Park JE. Effect of dietary genetically modified $\beta$-carotene biofortified rice on immune in rats. Reprod. Dev. Biol. 36: 133-139 (2012)
  17. Lee YT, Kim JK, Ha SH, Cho HS, Suh SC. Analyses of nutrient composition in genetically modified ${\beta}$-carotene biofortified rice. J. Koran Soc. Food Sci. Nutr. 39: 105-109 (2010) https://doi.org/10.3746/jkfn.2010.39.1.105
  18. Lee YT, Kim MH, Im JS, Kim JK, Ha SH, Lee SM, Kweon SJ, Suh SC. Influence of cooking on nutrient composition in provitamin A-biofortified rice. Korean J. Food Sci. Technol. 43: 683-688 (2011) https://doi.org/10.9721/KJFST.2011.43.6.683
  19. Ha SH. Fusion polynucleotide for biosynthesis of ${\beta}$-carotene comprising self-cleavage 2A sequence and transformed cells using the same. Korean Patent 10-0905219 (2009)
  20. AOAC. Official Methods of Analysis. 15th ed. Method 925.30, 945.46, 976.06. Association of Official Analytical Chemists, Washington, DC, USA (1990)
  21. AOAC. Official Methods of Analysis. 16th ed. Method 991.42. Association of Official Analytical Chemists, Washington, DC, USA (1995)
  22. AOAC. Official Methods of Analysis. 16th ed. Method 970.12. Association of Official Analytical Chemists, Washington, DC, USA (1995)
  23. Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226: 487-509 (1957)
  24. Vasconcelos IM, Maia AA, Siebra EA, Oliveira JT, Carvalho AF, Melo VM, Carlini CR, Castelar LI. Nutritional study of two Brazilian soybean (Glycine max) cultivars differing in the contents of antinutritional and toxic proteins. J. Nutr. Biochem. 12: 55-62 (2001) https://doi.org/10.1016/S0955-2863(00)00148-0
  25. Padgette SR, Taylor NB, Nida DL, Bailey MR, MacDonald J, Holden LR, Fuchs RL. The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans. J. Nutr. 126: 702-716 (1996)
  26. Mazza R, Soave M, Morlacchini M, Piva G, Marocco A. Assessing the transfer of genetically modified DNA from feed to animal tissues. Transgenic Res. 14: 775-784 (2005) https://doi.org/10.1007/s11248-005-0009-5
  27. Lee DY, Heo JC, Lee KH, Kim DH, U SU, Cho HS, Lee SH. Comparison of expression pattern of housekeeping genes in mice fed genetically modified rice. Korean J. Food Preserv. 14: 688-694 (2007)
  28. Silva LS, de Miranda AM, de Brito Magalhaes CL, Dos Santos RC, Pedrosa ML, Silva ME. Diet supplementation with beta-carotene improves the serum lipid profile in rats fed a cholesterolenriched diet. J. Physiol. Biochem. 69: 811-820 (2013) https://doi.org/10.1007/s13105-013-0257-4
  29. Batista R, Nunes B, Carmo M, Cardoso C, Jose HS, de Almeida AB, Manique A, Bento L, Ricardo CP, Oliveira MM. Lack of detectable allergenicity of transgenic maize and soya sample. J. Allergy Clin. Immunol. 116: 403-410 (2005) https://doi.org/10.1016/j.jaci.2005.04.014
  30. Kim KM, Kim CK, Kim BO. Safety test of brown rice expressing Arabidopsis calcium transporter by feeding trial in mice. J. Life Sci. 18: 1390-1394 (2008) https://doi.org/10.5352/JLS.2008.18.10.1390
  31. Gujar GT, Kalia V, Kumari A, Singh BP, Mittal A, Nair R, Mohan M. Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India. J. Invertebr. Pathol. 95: 214-219 (2007) https://doi.org/10.1016/j.jip.2007.03.011
  32. Reis LF, Van Sluys MA, Garratt RC, Pereira HM, Teixeira MM. GMOs: building the future on the basis of past experience. An. Acad. Bras. Cienc. 78: 667-686 (2006)