DOI QR코드

DOI QR Code

Characterization of Korean Sweet Potato Starches: Physicochemical, Pasting, and Digestion Properties

국내 육종 고구마 전분의 이화학 호화 및 소화 특성

  • Baek, Hye Rim (Department of Agricultural Biotechnology & Center for Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Ha Ram (Department of Agricultural Biotechnology & Center for Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Kyung Mi (Department of Agro-food Resources, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Jin Sook (Department of Agro-food Resources, National Academy of Agricultural Science, Rural Development Administration) ;
  • Han, Gui Jung (Department of Agro-food Resources, National Academy of Agricultural Science, Rural Development Administration) ;
  • Moon, Tae Wha (Department of Agricultural Biotechnology & Center for Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University)
  • 백혜림 (서울대학교 농생명공학부) ;
  • 김하람 (서울대학교 농생명공학부) ;
  • 김경미 (농촌진흥청 국립농업과학원 농식품자원부) ;
  • 김진숙 (농촌진흥청 국립농업과학원 농식품자원부) ;
  • 한귀정 (농촌진흥청 국립농업과학원 농식품자원부) ;
  • 문태화 (서울대학교 농생명공학부)
  • Received : 2013.12.27
  • Accepted : 2014.01.02
  • Published : 2014.04.30

Abstract

Physicochemical, pasting, and digestion properties of sweet potato starches from 11 Korean cultivars were investigated. Starch granules were variably oval, round, polygonal, spherical, and bell-shaped, and of 10.2-15.3 ${\mu}m$ in mean particle diameter. Amylose contents varied from 12.3 to 17.4%. A similar chain length distribution of amylopectin was found in each of the cultivars. The portion of $B_3$ correlated with the degree of amylose leaching. Thermal properties determined by differential scanning calorimetry showed high values of gelatinization temperatures in Shinyulmi and Jeungmi starches, but a relatively low value in Daeyumi starch. All starches exhibited a Ca-type diffraction pattern. Differing patterns were observed in swelling factors, depending on temperature. The contents of rapidly digestible starch, slowly digestible starch, and resistant starch ranged from 9.6-17.4, 31.4-45.6, and 35.7-62.8%, respectively. In Rapid Visco Analyser profiles, differences were observed in pasting parameters such as pasting temperature, peak viscosity, final viscosity, and breakdown.

국내에서 육종한 11가지 고구마의 전분 특성을 구명하여 새로운 식품 소재의 개발을 위한 기초자료로 이용하고자 전분의 이화학, 호화 및 소화 특성을 조사하였다. 아밀로스 함량은 12.5-17.4%의 범위를 보였으며, 아밀로펙틴 가지 사슬 분포는 시료 간에 유사하였다. 증미 전분의 아밀로펙틴 분자량이 가장 컸으며 대유미 전분은 가장 낮은 값을 보였다. 모든 고구마 전분의 X선 회절 양상은 C형 중에서도 A형에 가까운 $C_a$형을 나타내었다. 시차주사열량계로 측정한 열 특성에서 11품종 고구마 전분 중 신율미와 증미의 호화 온도가 높았고, 해피미는 낮았다. Rapid Visco Analyser로 페이스트 특성을 살펴보았을 때, 호화시간은 전분 입자의 크기, 최고점도, 강하점도와 음의 상관을 나타내었으며, 해피미가 가장 낮은 호화 온도와 치반점도를 보였고 강하점도와 최고점도 및 최종점도가 높았다. 소화 특성에서 증미의 RS 함량이 가장 많았으며, 신율미와 해피미는 SDS 함량이 많았다.

Keywords

References

  1. Bovell-Benjamin AC. Sweet potato: A review of its past, present, and future role in human nutrition. Adv. Food Nutr. Res. 52: 1- 59 (2007) https://doi.org/10.1016/S1043-4526(06)52001-7
  2. Wanjekeche EW, Keya EL. Utilization of fresh cassava and sweet potato pulps in baking. Ecol. Food Nutr. 33: 237-248 (1995) https://doi.org/10.1080/03670244.1995.9991432
  3. Teow CC, Truong VD, McFeeters RF, Thompson RL, Pecota KV, Yencho GC. Antioxidant activities, phenolic and ${\beta}$-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 103: 829-838 (2007) https://doi.org/10.1016/j.foodchem.2006.09.033
  4. Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46: S33-S50 (1992)
  5. Ludwig DS. Dietary glycemic index and obesity. J. Nutr. 130: 280S-283S (2000)
  6. Lehmann U, Robin F. Slowly digestible starch-its structure and health implications: a review. Trends Food Sci. Tech. 18: 346-355 (2007) https://doi.org/10.1016/j.tifs.2007.02.009
  7. Sajilata M, Singhal RS, Kulkarni PR. Resistant starch-a review. Compr. Rev. Food Sci. F. 5: 1-17 (2006) https://doi.org/10.1111/j.1541-4337.2006.tb00076.x
  8. Noda T, Tsuda S, Mori M, Takigawa S, Matsuura-Endo C, Saito K, Arachichige Mangalika WH, Hanaoka A, Suzuki Y, Yamauchi H. The effect of harvest dates on the starch properties of various potato cultivars. Food Chem. 86: 119-125 (2004) https://doi.org/10.1016/j.foodchem.2003.09.035
  9. Park JY, Ahn YS, Shin DH, Lim ST. Physicochemical properties of Korean sweet potato starches. J. Korean Soc. Food Sci. Nutr. 28: 1-8 (1999)
  10. Baek MH, Cha DS, Park HJ, Lim ST. Physicochemical properties of commercial sweet potato starches. Korean J. Food Sci. Technol. 32: 755-762 (2000)
  11. Tester RF, Morrison WR. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 67: 551-557 (1990)
  12. Eerlingen RC, Jacobs H, Block K, Delcour JA. Effects of hydrothermal treatments on the rheological properties of potato starch. Carbohyd. Res. 297: 347-356 (1997) https://doi.org/10.1016/S0008-6215(96)00279-0
  13. Rasper V. Investigations on starches from major starch crops grown in Ghana: III. Particle size and particle size distribution. J. Sci. Food Agr. 22: 572-580 (1971) https://doi.org/10.1002/jsfa.2740221105
  14. Gerard C, Barron C, Colonna P, Planchot V. Amylose determination in genetically modified starches. Carbohyd. Polym. 44: 19-27 (2001) https://doi.org/10.1016/S0144-8617(00)00194-6
  15. Lindeboom N, Chang PR, Tyler RT. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch-Starke 56: 89-99 (2004) https://doi.org/10.1002/star.200300218
  16. McPherson AE, Jane J. Comparison of waxy potato with other root and tuber starches. Carbohyd. Polym. 40: 57-70 (1999) https://doi.org/10.1016/S0144-8617(99)00039-9
  17. Hizukuri S. Effect of environment temperature of plants on the physicochemical properties of their starches. J. Japan Soc. Starch Sci. 17: 73-88 (1969)
  18. Hanashiro I, Abe J, Hizukuri S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohyd. Res. 283: 151-159 (1996) https://doi.org/10.1016/0008-6215(95)00408-4
  19. Abdel-Aal ESM, Hucl P, Chibbar RN, Han HL, Demeke T. Physicochemical and structural characteristics of flours and starches from waxy and nonwaxy wheats. Cereal Chem. 79: 458-464 (2002) https://doi.org/10.1094/CCHEM.2002.79.3.458
  20. Gomand SV, Lamberts L, Visser RGF, Delcour JA. Physicochemical properties of potato and cassava starches and their mutants in relation to their structural properties. Food Hydrocolloid. 24: 424- 433 (2010) https://doi.org/10.1016/j.foodhyd.2009.11.009
  21. Sandhu KS, Lim ST. Digestibility of legume starches as influenced by their physical and structural properties. Carbohyd. Polym. 71: 245-252 (2008) https://doi.org/10.1016/j.carbpol.2007.05.036
  22. You SG, Izydorczyk MS. Molecular characteristics of barley starches with variable amylose content. Carbohyd. Polym. 49: 33-42 (2002) https://doi.org/10.1016/S0144-8617(01)00300-9
  23. Yoo SH, Jane JL. Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors. Carbohyd. Polym. 49: 307-314 (2002) https://doi.org/10.1016/S0144-8617(01)00339-3
  24. Patindol JA, Gonzalez BC, Wang YJ, McClung AM. Starch fine structure and physicochemical properties of specialty rice for canning. J. Cereal Sci. 45: 209-218 (2007) https://doi.org/10.1016/j.jcs.2006.08.004
  25. Tsakama M, Mwangwela AM, Manani TA, Mahungu NM. Physicochemical and pasting properties of starch extracted from eleven sweetpotato varieties. Afr. J. Food Sci. Technol. 1: 90-98 (2010)
  26. Demeke T, Hucl P, Abdel-Aal ESM, Baga M, Chibbar RN. Biochemical characterization of the wheat waxy a protein and its effect on starch properties. Cereal Chem. 76: 694-698 (1999) https://doi.org/10.1094/CCHEM.1999.76.5.694
  27. Stevenson DG, Doorenbos RK, Jane JL, Inglett GE. Structures and functional properties of starch from seeds of three soybean (Glycine max (L.) Merr.) varieties. Starch-Starke 58: 509-519 (2006) https://doi.org/10.1002/star.200600534
  28. Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 76: 629-637 (1999) https://doi.org/10.1094/CCHEM.1999.76.5.629
  29. Kaur M, Sandhu KS, Lim ST. Microstructure, physicochemical properties and in vitro digestibility of starches from different Indian lentil (Lens culinaris) cultivars. Carbohyd. Polym. 79: 349-355 (2010) https://doi.org/10.1016/j.carbpol.2009.08.017
  30. Oladebeye AO, Oshodi AA, Oladebeye AA. Physicochemical properties of starches of sweet potato (Ipomea batata) and red cocoyam (Colocasia esculenta) cormels. Pak. J. Nutr. 8: 313-315 (2009) https://doi.org/10.3923/pjn.2009.313.315
  31. Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M. Starches from different botanical sources II: Contribution of starch structure to swelling and pasting properties. Carbohyd. Polym. 62: 25-34 (2005) https://doi.org/10.1016/j.carbpol.2005.07.003
  32. Eliasson AC. Viscoelastic behaviour during the gelatinization of starch I: Comparison of wheat, maize, potato and waxy-barley starches. J. Texture Stud. 17: 253-265 (1986) https://doi.org/10.1111/j.1745-4603.1986.tb00551.x
  33. Moorthy SN. Tuber Crop Starches. Central Tuber Crops Research Institute, Kerala, India. pp. 1-52. (2001)
  34. Jenkins DJA, Jenkins AL, Wolever TMS, Josse RG, Wong GS. The glycaemic response to carbohydrate foods. Lancet 324: 388-391 (1984) https://doi.org/10.1016/S0140-6736(84)90554-3
  35. Snow P, O'Dea K. Factors affecting the rate of hydrolysis of starch in food. Am. J. Clin. Nutr. 34: 2721-2727 (1981)
  36. Goddard MS, Young G, Marcus R. The effect of amylose content on insulin and glucose responses to ingested rice. Am. J. Clin. Nutr. 39: 388-392 (1984)
  37. Guraya HS, Kadan RS, Champagne ET. Effect of rice starch-lipid complexes on in vitro digestibility, complexing index, and viscosity. Cereal Chem. 74: 561-565 (1997) https://doi.org/10.1094/CCHEM.1997.74.5.561
  38. Jacobs H, Eerlingen RC, Clauwaert W, Delcour JA. Influence of annealing on the pasting properties of starches from varying botanical sources. Cereal Chem. 72: 480-487 (1995)

Cited by

  1. Physicochemical Characteristics of Sweetpotato (Ipomoea batatas (L.) Lam) Starch Depending on Cultivation Periods vol.46, pp.6, 2014, https://doi.org/10.9721/KJFST.2014.46.6.750
  2. Development of Sweet Potato Shaped Rice Madeira Cakes using Sweet Potato Paste with Different Cultivars vol.33, pp.1, 2017, https://doi.org/10.9724/kfcs.2017.33.1.78
  3. Isolation and characterization of starches from chestnuts cultivated in three regions of Korea vol.67, pp.7-8, 2015, https://doi.org/10.1002/star.201500034
  4. Physicochemical and Gel Properties of Starch Purified from Mealy Sweet Potato, Daeyumi vol.32, pp.4, 2016, https://doi.org/10.9724/kfcs.2016.32.4.524
  5. Physicochemical Characteristics of Starches Purified fromNewly Developed Colored Sweet Potatoes, Danjami and Hogammi vol.34, pp.3, 2018, https://doi.org/10.9724/kfcs.2018.34.3.256
  6. Textural character of sweet potato root of Korean cultivars in relation to chemical constituents and their properties pp.2092-6456, 2018, https://doi.org/10.1007/s10068-018-0429-7