DOI QR코드

DOI QR Code

Lattice discrete particle modeling of compressive failure in hollow concrete blocks

  • Javidan, Fatemeh (Faculty of Civil and Environmental Engineering, Tarbiat Modares University) ;
  • Shahbeyk, Sharif (Faculty of Civil and Environmental Engineering, Tarbiat Modares University) ;
  • Safarnejad, Mohammad (Faculty of Civil and Environmental Engineering, Tarbiat Modares University)
  • Received : 2013.03.25
  • Accepted : 2014.02.25
  • Published : 2014.05.30

Abstract

This work incorporates newly introduced Lattice Discrete Particle Model (LDPM) to assess the failure mechanism and strength of hollow concrete blocks. Alongside, a method for the graphical representation of cracked surfaces in the LDPM is outlined. A slightly modified calibration procedure is also suggested and used to estimate required model parameters for a tested concrete sample. Next, the model is verified for a compressively loaded hollow block made of the very same concrete. Finally, four geometries commonly used in the production of hollow concrete blocks are selected, numerically simulated, and their failure properties are explored under concentric and eccentric compressions.

Keywords

References

  1. Alnaggar, M. and Cusatis, G. (2012), "Automatic parameter identification of discrete mesoscale models with application to the coarse-grained simulation of reinforced concrete structures", 20th Analysis and Computation Specialty Conference, 406-417.
  2. Alnaggar, M., Cusatis, G. and Di Luzio, G. (2013), "Lattice discrete particle modeling (LDPM) of alkalisilica- reaction (ASR) deterioration of concrete structures", Cem. Concr. Comp., 41, 45-59. https://doi.org/10.1016/j.cemconcomp.2013.04.015
  3. Andolfato, R.P., Camacho, J.S. and Ramalho, M.A. (2007), "Brazilian results on structural masonry concrete blocks", ACI Mater. J., 104(1), 33-39.
  4. Barbosa, C.S. (2004), "Resistencia e deformabilidade de blocosvazados de concreto e suascorrelacoes com as propriedades mecanicas do material constituinte", M.Sc. Thesis, Universidade de Sao Paulo, Sao Paulo, Brazil.
  5. Barbosa, C.S. and Hanai, J.B. (2009), "Strength and deformability of hollow concrete blocks: correlation of block and cylindrical sample test results", IBRACON Struct. Mater. J., 2(1), 85-99.
  6. Barbosa, C.S., Lourenco, P.B. and Hanai, J.B. (2010), "On the compressive strength prediction for concrete masonry prisms", Mater. Struct., 43(3), 331-344. https://doi.org/10.1617/s11527-009-9492-0
  7. Carol, I. and Bazant, Z.P. (1997), "Damage and plasticity in microplane theory", Int. J. Solids Struct., 34(29), 3807-3835. https://doi.org/10.1016/S0020-7683(96)00238-7
  8. CEB-FIP Model Code 1990 (1993), Comite Euro-International du Beton, Thomas Telford Services Ltd.
  9. Cusatis, G., Bazant, Z.P. and Cedolin, L. (2003), "Confinement-shear lattice model for concrete damage in tension and compression: I. Theory", ASCE J. Eng. Mech., 129(12), 1439-1448. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1439)
  10. Cusatis, G., Bazant, Z.P. and Cedolin, L. (2006), "Confinement-shear lattice CSL model for fracture propagation in concrete", Comput. Meth. Appl. Mech. Eng., 195(52), 7154-7171. https://doi.org/10.1016/j.cma.2005.04.019
  11. Cusatis, G., Mencarelli, A., Pelessone, D. and Baylot, J.T. (2011a), "Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. II: Calibration and validation", Cem. Concr. Comp., 33(9), 891-905. https://doi.org/10.1016/j.cemconcomp.2011.02.010
  12. Cusatis, G., Pelessone, D. and Mencarelli, A. (2011b), "Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. I: Theory", Cem. Concr. Comp., 33(9), 881-890. https://doi.org/10.1016/j.cemconcomp.2011.02.011
  13. Del Coz Diaz, J.J., Nieto, P.J.G., Rabanal, F.P.A. and Martinez-Luengas, A.L. (2011), "Design and shape optimization of a new type of hollow concrete masonry block using the finite element method", Eng. Struct., 33(1), 1-9. https://doi.org/10.1016/j.engstruct.2010.09.012
  14. Drysdale, R.G., El-Dakhakhni, W.W. and Kolodziejski, E.A. (2005), "Shear capacity for flange-web intersection of concrete block shear walls", ASCE J. Struct. Eng., 134(6), 947-960.
  15. Ganesan, T. and Ramamurthy, K. (1992), "Behavior of concrete hollow-block masonry prisms under axial compression", ASCE J. Struct. Eng., 118(7), 1751-1762. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1751)
  16. Green, S.I. and Swanson, S.R. (1973), "Static constitutive relations for concrete", Rep. No. AFWL-TR-72-2, Air Force Weapons Lab., Kirtland Air Force Base, Albuquerque, NM, USA.
  17. Grimm, C.T. and Tucker, R.L. (1985), "Flexural strength of masonry prisms versus wall panels", ASCE J. Struct. Eng., 111(9), 2021-2032. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:9(2021)
  18. Hamid, A.A. and Chukwunenye, A.O. (1986), "Compression behavior of concrete masonry prisms", ASCE J. Struct. Eng., 112(3), 605-613. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:3(605)
  19. Jaafar, M.S., Thanoon, W.A., Najm, A.M.S., Abdulkadir, M.R. and Abang-Ali, A.A. (2006), "Strength correlation between individual block, prism and basic wall panel for load bearing interlocking mortarless hollow block masonry", Constr. Build. Mater., 20(7), 492-498. https://doi.org/10.1016/j.conbuildmat.2005.01.046
  20. Koksal, H.O., Karakoc, C. and Yildirim, H. (2005), "Compression behavior and failure mechanisms of concrete masonry prisms", ASCE J. Mater. Civil Eng., 17(1), 107-115. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:1(107)
  21. Lourenco, P.B. and Pina-Henriques, J.L. (2006), "Validation of analytical and continuum numerical methods for estimating the compressive strength of masonry", Comp. Struct., 84(29-30), 1977-1989. https://doi.org/10.1016/j.compstruc.2006.08.009
  22. Lu, M. and Schultz, A.E. (2011), "Influence of cavity dimension on the stability of eccentrically loaded slender unreinforced masonry hollow walls", Constr. Build. Mater., 25(12), 4444-4453. https://doi.org/10.1016/j.conbuildmat.2011.04.001
  23. Maurenbrecher, A.H.P. (1985), "Axial compression tests on masonry walls and prisms", Proceedings of the Third North American Masonry Conference, Arlington, June.
  24. Maurenbrecher, A.H.P. (1986), "Compressive strength of hollow concrete blockwork", Proceedings of the Fourth Canadian Masonry Symposium, New Brunswick, Canada, June.
  25. Mencarelli, A. (2007), "The lattice discrete particle model (LDPM) for concrete: Calibration and validation under quasi-static loading conditions", M.Sc. Thesis, Rensselaer Polytechnic Institute, New York.
  26. Mencarelli, A. (2010), "Numerical simulation of the effect of blast and penetration on reinforced concrete structures", Ph.D. Dissertation, Rensselaer Polytechnic Institute, New York, USA.
  27. Page, A.W. and Shrive, N.G. (1990), "Concentrated loads on hollow concrete masonry", ACI Struct. J., 87(4), 436-444.
  28. Pina-Henriques, J.L. and Lourenco, P.B. (2006), "Masonry compression: A numerical investigation at the meso-level", Eng. Comput., 23(4), 382-407. https://doi.org/10.1108/02644400610661163
  29. Ramamurthy, K., Sathish, V. and Ambalavanan, R. (2000), "Compressive strength prediction of hollow concrete block masonry prisms", ACI Struct. J., 97(1), 61-67.
  30. Sayed-Ahmed, E.Y. and Shrive, N.G. (1996), "Nonlinear finite element model of hollow masonry", ASCE J. Struct. Eng., 122(6), 683-689. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(683)
  31. Schauffert, E., Cusatis, G., Pelessone, D., O'Daniel, J. and Baylot, J. (2012), "Lattice discrete particle model for fiber-reinforced concrete. II: Tensile fracture and multiaxial loading behavior", ASCE J. Eng. Mech., 138(7), 834-841. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000392
  32. Schauffert, E.A. and Cusatis, G. (2012), "Lattice discrete particle model for fiber reinforced concrete (LDPM-F): I Theory", ASCE J. Eng. Mech., 138(7), 826-833. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000387
  33. Smith, J., Cusatis, G., Pelessone, D., O'Daniel, J. and Baylot, J. (2012), "Calibration and validation of the lattice discrete particle model for ultra high- performance fiber-reinforced concrete", 20th Analysis and Computation Specialty Conference, pp. 394-405.
  34. Thanoon, W.A., Alwathaf, A.H., Noorzaei, J., Jaafar, M.S. and Abdulkadir, M.R. (2008a), "Finite element analysis of interlocking mortarless hollow block masonry prism", Comput. Struct., 86(6), 520-528. https://doi.org/10.1016/j.compstruc.2007.05.022
  35. Thanoon, W.A., Alwathaf, A.H., Noorzaei, J., Jaafar, M.S. and Abdulkadir, M.R. (2008b), "Nonlinear finite element analysis of grouted and ungrouted hollow interlocking mortarless block masonry system", Eng. Struct., 30(6), 1560-1572. https://doi.org/10.1016/j.engstruct.2007.10.014
  36. Thanoon, W.A., Jaffar, M.S., Abdulkadir, M.R., Abang-Ali, A.A., Trikha, D.N. and Najm, A.M.S. (2004), "Development of an innovative interlocking load bearing hollow block system in Malaysia", Constr. Build. Mater., 18(6), 445-454. https://doi.org/10.1016/j.conbuildmat.2004.03.013
  37. Wu, C. and Hao, H. (2008), "Numerical derivation of averaged material properties of hollow concrete block masonry", Eng. Struct., 30(3), 870-883. https://doi.org/10.1016/j.engstruct.2007.05.017
  38. Yi, J. and Shrive, N.G. (2003), "Behaviour of partially grouted hollow concrete masonry subjected to concentrated loads", Can. J. Civil Eng., 30(1), 191-202. https://doi.org/10.1139/l02-103

Cited by

  1. A micro-mechanical parametric study on the strength degradation of concrete due to temperature exposure using the discrete element method vol.88-89, 2016, https://doi.org/10.1016/j.ijsolstr.2016.03.009
  2. Compressive performance of new types of load-bearing horizontal-hole interlocking concrete hollow blocks pp.2048-4011, 2018, https://doi.org/10.1177/1369433218813472
  3. A numerical-experimental evaluation of beams composed of a steel frame with welded and conventional stirrups vol.22, pp.1, 2014, https://doi.org/10.12989/cac.2018.22.1.027
  4. Experimental investigation on tensile strength of hollow concrete blocks vol.54, pp.4, 2014, https://doi.org/10.1617/s11527-021-01761-3
  5. Discrete mechanical models of concrete fracture vol.257, pp.None, 2014, https://doi.org/10.1016/j.engfracmech.2021.108030